| J\l . R 0 ID U Clﬂ'_r! (») jﬁ';ﬁ.ﬁj;: »‘_ '
AP ROGRAMN INGESATR
APPLICATIOR

PETER Mﬂ)(IIN

WA W

BEGINNER’S GUIDE
TO SAP ABAP

AN INTRODUCTION TO PROGRAMMING SAP
APPLICATIONS USING ABAP

PETER MOXON

PUBLISHED BY:
SAPPROUK Limited
Copyright © 2012 by Peter Moxon. All rights reserved.

http://www.saptraininghg.com

Copyright, Legal Notice and Disclaimer:
All rights reserved.

No part of this publication may be copied, reproduced in any format, by any means,
electronic or otherwise, without prior consent from the copyright owner and
publisher of this book.

This publication is protected under the US Copyright Act of 1976 and all other
applicable international, federal, state and local laws, and all rights are reserved,
including resale rights: you are not allowed to give or sell this Guide to anyone else.
If you received this publication from anyone other than saptraininghg.com, you've
received a pirated copy. Please contact us via e-mail at support at saptraininghg.com
and notify us of the situation.

Although the author and publisher have made every reasonable attempt to achieve
complete accuracy of the content in this Guide, they assume no responsibility for
errors or omissions. Also, you should use this information as you see fit, and at your
own risk. Your particular situation may not be exactly suited to the examples
illustrated here; in fact, it's likely that they won't be the same, and you should adjust
your use of the information and recommendations accordingly.

This book is not affiliated with, sponsored by, or approved by SAP AG. Any
trademarks, service marks, product names or named features are assumed to be the
property of their respective owners, and are used only for reference. There is no
implied endorsement if we use one of these terms.

Table of Contents
Contact the Author

Introduction
How to Use This Book
Chapter 1: SAP System Overview
SAP System Architecture
Environment for Programs
Work Processes
The Dispatcher
The Database Interface
First look at the ABAP Workbench
First Look
ABAP Dictionary
ABAP Editor
Function Builder
Menu Painter
Screen Painter
Object Navigator
Chapter 2: Data Dictionary
Introduction
Creating a Table
Creating Fields
Data Elements
Data Domains
Technical Settings

Entering Records into a Table

12
13
14
15
15
18
19
19
20
22
23
27
27
27
28
28
28
29
29
29
33
34
36
45
48

Viewing the Data in a Table
Chapter 3
Creating a Program
Code Editor
Write Statements

Output Individual Fields
Chaining Statements Together
Copy Your Program
Declaring Variables
Constants
Chapter 4
Arithmetic — Addition
Arithmetic — Subtraction
Arithmetic — Division
Arithmetic — Multiplication
Conversion Rules
Division Variations

The standard form of division.

The integer form of division.

The remainder form of division.

Chapter 5 — Character Strings
Declaring C and N Fields
Data type C.
Data type N.
String Manipulation

Concatenate

51
55
55
57
62
71
72
73
75
78
79
79
80
81
81
82
83
83
83
84
85
85
85
86
87
87

Condense 88

NO-GAPS 89
Find the Length of a String 89
Replace 90
Search 90

SEARCH Example 1 91

SEARCH Example 2 91

SEARCH Example 3 92

SEARCH Example 4 92
Shift 93
Split 94
SubFields 96

Chapter 6 — Debugging Programs 98
Fields mode 102
System Variables 103
Table Mode 103
Breakpoints 105
Static Breakpoints 107
Watchpoints 108
Ending a Debug Session 111

Chapter 7: Working with Database Tables 113
Making a Copy of a Table 113
Add New Fields 116
Foreign Keys 117
Append Structures 122
Include Structures 124

Vi

Key Fields 127

Deleting Fields 130
Deleting Tables 133
Chapter 8 — Working with Other Data Types 136
Date and Time Fields 136
Date Fields in Calculations 138
Time Fields in Calculations 141
Quantity and Currency Fields in Calculations 142
Chapter 9 — Modifying Data in a Database Table 146
Authorisations 146
Fundamentals 146
Database Lock Objects 148
Using Open SQL Statements 149
Using Open SQL Statements — 5 Statements 150
Insert Statement 151
Clear Statement 155
Update Statement 157
Modify Statement 158
Delete Statement 160
Chapter 10 — Program Flow Control and Logical Expressions 164
Control Structures 164
If Statement 164
Linking Logical Expressions Together 169
Nested If Statements 169
Case Statement 170
Select Loops 171

vii

Do Loops 172

Nested Do Loops 175
While Loops 178
Nested While Loops 179
Loop Termination — CONTINUE 180
Loop Termination —- CHECK 181
Loop Termination — EXIT 182
Chapter 11 — Selection Screens 184
Events 184
Intro to Selection Screens 185
Creating Selection Screens 186
At Selection Screen 187
Parameters 188
DEFAULT 189
OBLIGATORY 190
Automatic Generation of Drop-Down fields 190
LOWER CASE 191
Check Boxes and Radio Button Parameters 192
Select-Options 193
Select-Option Example 196
Select-Option Additions 200
Text Elements 200
Variants 203
Text Symbols 209
Text Messages 211
Skip Lines and Underline 216

viii

Comments 218

Format a Line and Position 219
Element Blocks 221
Chapter 12 — Internal Tables 223
Introduction 223
Types of Internal Tables 224
Standard Tables 224
Sorted Tables 225
Hashed Table 225
Internal Tables - Best Practice Guidelines 225
Creating Standard and Sorted Tables 226
Create an Internal Table with Separate Work Area 227
Filling an Internal Table with Header Line 228
Move-Corresponding 232
Filling Internal Tables with a Work Area 234
Using Internal Tables One Line at a Time 235
Modify 236
Describe and Insert 236
Read 238
Delete Records 239
Sort Records 240
Work Area Differences 241
Loops 241
Modify 242
Insert 242
Read 242

Delete
Delete a Table with a Header Line
CLEAR
REFRESH
FREE
Delete a Table with a Work Area
Chapter 13 — Modularizing Programs
Introduction
Includes
Procedures
Sub-Routines
Passing Tables
Passing Tables and Fields Together
Sub-Routines - External Programs
Function Modules
Function Modules — Components
Attributes Tab
Import Tab
Export Tab
Changing Tab
Tables Tab
Exceptions Tab
Source Code Tab
Function Module Testing

Function Modules - Coding

242
243
243
243
243
244
245
245
246
249
250
254
255
256
257
258
262
262
263
263
263
263
264
264
267

Xi

Contact the Author

As the reader of this book you are my most important critic and commentator. |
would love to hear from you to let me know what you did and did not like about this
book, as well as to what you think I could do in future books to make them stronger.

E-mail: pete@sappro.co.uk

Please note that although I cannot personally help you learn SAP ABAP, | am
available for corporate hire for project management, technical lead and mentoring
programs.

Refer to my website http://www.saptraininghg.com to see all the training material |
have available and to get a good overview of my expertise.

12

INTRODUCTION

Introduction

This book has been written with SAP Super-User and Consultants in mind. Whether your
current job title is functional consultant, system support analyst, business consultant,
project manager for something entirely different, if you are responsible for all have an
interest in creating ABAP programs, then this book is for you.

Much of the book is written in the "How-To" style and will allow anybody to follow along
and create ABAP programs from scratch. It is written in such a way that each chapter
builds on the last so that you become familiar in lots of different aspects of SAP ABAP
programming to enable you to then start creating your own programs and understand
programs you will find in your own SAP system.

The principles and guidelines apply across all SAP modules whether you're writing
programs for HR, Fl, SD or one of the many other modules within SAP.

Over my years of working with SAP systems | have had the great pleasure of working with
some top-notch functional and technical consultants who know how to document, plan
and develop SAP programs of all types. Likewise | have had the unpleasant experience of
working with lower quality consultants, who either race through or stumble and stutter
through their SAP work copying and pasting from one program or another resulting in
difficult to support programs. This ultimately often results in project delays and cost
overruns.

The aim of this book is to help you understand how SAP ABAP programs are put together
and developed so that you will produce detailed concise understandable and functional
programs that correspond with your specifications and most importantly delivered on
time and on budget.

13

INTRODUCTION

How to Use This Book

There are several ways to go through this book and the best way depends on your
situation.

If you are new to writing SAP programs then | suggest starting at the very beginning and
working through each chapter one after another.

If you are familiar with some SAP ABAP programming then you may want to use the table
of contents and jump to the chapter that interests you, but remember each chapter builds
on the previous chapter so some of the examples shown do require you to have
knowledge of the database tables we create in this book.

14

SAP SYSTEM OVERVIEW

Chapter 1: SAP System Overview

We will start out by covering the high-level architecture of an SAP system, including the
technical architecture and platform independence. We will dig into the environment that
our ABAP programs run in, which include the work processes and the basic structures of
an ABAP program. Then we can focus on a running SAP system, discuss the business
model overview, and begin looking at the ABAP workbench.

SAP System Architecture

First, the Technical Architecture of a typical SAP system will be discussed, before moving
on to the Landscape Architecture, and a discussion of why the landscape should be broken
into multiple systems.

This diagram shows the 3-tier Client/Server architecture of a typical SAP system:

BEGINNER GUIDE TO ABAP

Presentation

g4 2
= =
Application ! : -

ABAP \ I’AOAP

Database

http://www.SapTrainingHQ.com

15

SAP SYSTEM OVERVIEW

At the top is the Presentation server, which is any input device that can be used to control
an SAP system (the diagram shows the SAP GUI, but this could equally be a web browser,
a mobile device, and so on). The Presentation layer communicates with the Application
server, and the Application server is the 'brains' of an SAP system, where all the central
processing takes place. The Application server is not just one system in itself, but can be
made up of multiple instances of the processing system. The Application server, in turn,
communicates with the Database layer.

The Database is kept on a separate server, mainly for performance reasons, but also for
security, providing a separation between the different layers of the system.

Communication happens between each layer of the system, from the Presentation layer,
to the Application server, to the Database, and then back up the chain, through the
Application server again, for further processing, until finally reaching the Presentation
layer.

BEGINNER GUIDE TO ABAP

1/
Module 1 — SAP System Overview

High level architecture of an SAP system
* Technical Architecture
« 3-Tier Client/Server architecture

* Landscape Architecture

« Development System Platiorm
« Testing System -
« Production system Transpostsystom
7%
http://www.S3pTrainingHQ.com

A typical Landscape Architecture - Typical here is subjective, in practical terms there is not
really any such thing as a standard, 'typical' landscape architecture which most companies

16

SAP SYSTEM OVERVIEW

use. However, it is common to find a Development system, a Testing system and a
Production system:

The reason for this is fairly simple. All the initial development and testing is done on a
Development system, which ensures other systems are not affected. Once developments
are at a stage where they may be ready to be tested by an external source, or someone
within the company whose role is to carry out testing, the developments are moved, using
what is called a Transport System, to the next system (here, the Testing system).

Normally, no development at all is done on the testing system; it is just used for testing
the developments from the development system. If everything passes through the Testing
system, a Transport system is used again to move the developments into the Production
environment. When code enters the Production environment, this is the stage at which it
is turned on, and used within the business itself.

The landscape architecture is not separated just for development purposes; the company
may have other reasons. This could be the quantity of data in the Production system,
which may be too great to be used in the development environment (normally the
Development and Testing systems are not as large as the Production system, only needing
a subset of data to test on). Also, it could be for security reasons. More often than not,
companies do not want developers to see live production data, for data security reasons
(for example, the system could include employee data or sales data, which a company
would not want people not employed in those areas to see). Normally, then, the
Development and Testing systems would have their own set of data to work with.

The three systems described here, normally, are a minimum. It can increase to four
systems, perhaps with the addition of a Training system, or perhaps multiple projects are
running simultaneously, meaning there may be two separate Development systems, or
Testing systems, even perhaps a Consolidation system before anything is passed to the
Production environment. This is all, of course, dependent on the company, but commonly
each system within the Landscape architecture will have its own Application server and its
own Database server, ensuring platform independence.

17

SAP SYSTEM OVERVIEW

Environment for Programs

Next, we have the environment which programs run in, the Work Processes, and the
structure of an ABAP program.

BEGINNER GUIDE TO ABAP

e
Module 1 — SAP System Overview

Environment for our Programs
* 2 Types of Programs
* Reports & Dynpros
* Work Processes
Dispatcher
Dynpro Processor
ABAP Processor
Database Interface

htip://www.SapTrainingHQ.com

Within an SAP system, or at least the example used here, there are two types of programs,
Reports and Dynpro’s.

Reports, as the name would suggest, are programs which generate lists of data. They may
involve a small amount of interactivity, but mainly they supply data to the front-end
interfaces, the SAP GUI and so on. When a user runs a report, they typically get a selection
screen. Once they enter their selection parameters and execute the report, they normally
cannot intervene in the execution of the program. The program runs, and then displays
the output.

Dynpro’s are slightly different. They are dynamic programs, and allow the user to
intervene in the execution of the program, by processing a series of screens, called

18

SAP SYSTEM OVERVIEW

Dialogue screens. The user determines the flow of the program itself by choosing which
buttons or fields to interact with on the screen. Their action then triggers different
functions which have been coded within the flow logic of the program. While reports are
being created, interfaces are also to be generated which are classed as Dynpro’s, for all
the selection criteria.

Most of the work done by people involved with ABAP is done within Report programs, and
even though these programs are labelled 'Reports’, they do not always generate output.
The Report programs are there to process the logic, reading and writing to the Database,
in order to make the system work.

Work Processes

Every program that runs in an SAP system runs on what are called Work Processes, which
run on the Application server. Work Processes themselves work independently of the
computer's operating system and the Database that it interacts with, giving the
independence discussed earlier with regard to the Technical architecture. When an SAP
system is initially set up, the basis consultants (who install the system, keep it running,
manage all the memory and so on) configure SAP in such a way that it automatically sets
the number of Work Processes programs use when they start, the equivalent of setting up
a pre-defined number of channels or connections to the Database system itself, each of
which tend to have their own set of properties and functions.

The Dispatcher

You might come across something referred to as the Dispatcher. The SAP system has no
technical limits as to the number of users who can log on and use it, generally the number
of users who can access an SAP system is much larger than the number of available Work
Processes the system is configured for. This is because not everybody is sending
instructions to the Application server at exactly the same time. Because of this, users
cannot be assigned a certain number of processes while they are logged on.

The Dispatcher controls the distribution of the Work Processes to the system users. The
Dispatcher keeps an eye on how many Work Processes are available, and when a user
triggers a transaction, the Dispatcher's job is to provide that user with a Work Process to
use. The Dispatcher tries to optimise things as far as possible, so that the same Work
Process receives the sequential Dialogue steps of an application. If this is not possible, for
example because the user takes a long time between clicking different aspects of the

19

SAP SYSTEM OVERVIEW

screen, it will then select a different Work Process to continue the processing of the
Dialogue program. It is the Work Process which executes an application, and it is the Work
Process which has access to the memory areas that contain all of the data and objects an
application uses. It also makes three very important elements available.

The first is the Dynpro processor. All Dynpro programs have flow and processing logic, and
it is the Dynpro processor's job to handle the flow logic. It responds to the user's
interactions, and controls the further flow of the program depending on these
interactions. It is responsible for Dialogue control and the screen itself, but it is important
to remember that it cannot perform calculations; it is purely there to manage the flow

logic of a program.

The next important element is the ABAP processor, which is responsible for the processing
logic of the programs. It receives screen entries from the Dynpro processor, and transmits
the screen output to the program. It is the ABAP processor which can perform the logical
operations and arithmetical calculations in the programs. It can check authorisations, and
read and write to the Database, over the Database Interface.

The Database Interface

The Database Interface is the third important element. It is a set of ABAP statements that
are Database independent. What this means is that a set of ABAP statements can be used
that, in turn, can communicate with any type of Database that has been installed when
the system was set up. Whether this is, for example, a Microsoft SQL server or an Oracle
Database, you can use the same ABAP statements, called Open SQL, to control the entire
Database reading and writing over the Database Interface. The great advantage of this is
that the ABAP statements have encapsulation, meaning the programmers do not need to
know which physical Database system the ABAP system they are using actually supports.

There are times when you may want to use a specific SQL statement native to the
database which is installed. ABAP is designed in such a way that if this type of coding is
necessary, this facility is available. It is possible to directly access the Database through
the programs using native SQL statements, but this is not encouraged. Normally, when
systems are set up, the system administrator will forbid these practices, due to the
security and stability risks to the system which may be introduced. If you are going to be

programming ABAP, make sure Open SQL is used, because then anyone subsequently

looking at the programs will understand what is trying to be achieved.

20

21

SAP SYSTEM OVERVIEW

SAP SYSTEM OVERVIEW

First look at the ABAP Workbench

It is now time to take a first look at an SAP ABAP program. The following section will look
at the SAP System and introduce the ABAP Workbench. But before doing so, let's take a
look at the structure of an ABAP program.

BEGINNER GUIDE TO ABAP

Module 1 — SAP System Overview

Lets get running with the system.

* How An ABAP Program Is Structured

* First Look At The ABAP Workbench

hetp:{{www. SagTrainingHQ com

Like many other programming languages, ABAP programs are normally structured into
two parts.

Part 1 - Declaration Section
Part 2 - Processing Blocks.

The first is what is considered to be the Declaration section. This is where you define the
data types, structures, tables, work area variables and the individual fields to be used
inside the programs. This is also where you would declare global variables that will be
available throughout the individual subsections of the program. When creating an ABAP
program, you do not only declare global variables, but you also have the option to declare

22

SAP SYSTEM OVERVIEW

variables that are only valid within specific sections inside the programs. These sections
are commonly referred to as internal Processing Blocks.

The Declaration part of the program is where you define the parameters used for the
selection screens for the reports. Once you have declared tables, global variables and data
types in the Declaration section of the program, then comes the second part of the ABAP
program, where all of the logic for the program will be written. This part of an ABAP
program is often split up into what are called Processing Blocks.

The Processing Blocks defined within programs can be called from the Dynpro processor,
which were discussed previously, depending on the specific rules created within the
program. These Processing Blocks are almost always just small sections of programming
logic which allow the code to be encapsulated.

First Look

When logged into an SAP system it will look something similar to the image below.

= Menu =it Eavorttes Estraz System Help

& YA EH @ DHBR Dho0 BE G|
SAP Easy Access
Y [| & Shothermenu | B ER » & [Hoeate rde

3 D Information Systemes

] U_Ili

The way the SAP GUI looks may vary, the menu to the side may be different, but here the
display show a minimal menu tree which will be used throughout this book.

The first thing to do here is look at the ABAP Workbench. To access this, you use the menu
on the left hand side. Open the SAP menu, choose Tools and open the ABAP Workbench,
where there will be four different options.

23

SAP SYSTEM OVERVIEW

* 2 SAP menu
v [Office
¥ [J Information Systems

v [0 Owerview

v [J Development
¥ [J Test

v (3 utilities

The first thing to look at is a quick overview of how to run a transaction in SAP. There are
two ways to do this. Firstly, if the overview folder is opened, any item which does not look
like a folder itself, is a transaction which can be run. In this instance, we can see the Object
Navigator:

~ 3 SAP menu
v [(J Office
v [J Information Systems
v 2 Tools
~ 3 ABAP Workbench
v 2 Cverview
v [J application Hierarchy
T al
* [Olyigct Navigator]
« 1) Buhess Object Browser
+ £ Modification Browser
+ 12 Reuse Litar ary
* 1 Information System
» B Data Browser
B @ Transport Crganizer
« 2 BAPT Explorer
v [J Development

Double click this, and the transaction will open:

24

SAP SYSTEM OVERVIEW

Object Navigator
=229 | 25 Y Edit ohject

I@ MIME Repository

[ﬁ Repository Browser

|@Eﬂep05itury Infosystemn
I Tag Library
l%Transpl:urt Crganizer

e) —)— |

Prograrn il

ZTEST1 v | G |
<= iE]a)(E)HE. Q) =

Ohject Marme [
* ZTEST1 Te

¢

To exit out of the transaction, click the Back button:

The second way of running a transaction is to enter the transaction code into the
transaction code input area:

L= MEend EOT EAYONTES EXTFAS 9YSTEM Help

¢ 1 -dEICce@ DHE

SAP Easy Access
(5 [™ | & | S%0ther menu &l & | v a | [fCreate

A useful tip to become familiar with the names of transactions is to look at the Extras
menu --> open Settings and in the dialogue box which appears, select the option 'Display
technical names' and click the '‘Continue’ icon:

25

SAP SYSTEM OVERVIEW

[= Settings

This is used to specify settings

[Display favorites at end of list
" |Do not display menu, only display favarites
[w|Da not display screen

e B
L«'Dizplay technical names r |

EYEYENEY

ontinue (Enter)

m
J 5:3' Transnnrt CFnAnizer

The menu tree will be refreshed, and when the 'Overview' folder is opened, the
transaction codes will be made visible. It is now possible to become familiar with them,
and enter them directly into the transaction code input area:

¥ 2] Tools
> 3 ABAP Warkbench
v 2 Crverview
v (3 application Hierarchy
« 1) SESO - Ohject Mavigator
* Eia SWOZ - Business Obiject Browser
« 1) SE95 - Modification Browser
« 72 SES3 - Reuse Litarary
« [SES4 - Information Systemn
«) SE16 - Data Browser

I . al
o I@%@ - Transport CJIrI;|ar1|zer_|I
- B - BAPI Explarer

v [J Developrment

Now, a step-by-step look will be taken through the major transactions of the ABAP
Workbench to become familiar with, and use, as an ABAP developer.

26

SAP SYSTEM OVERVIEW

ABAP Dictionary

One thing most programs will have in common is that they will read and write data to and
from the Database tables within the SAP system. The ABAP Workbench has a transaction
to allow the creation of Database tables, view the fields which make up these tables and
browse the data inside. This is called the ABAP Dictionary. The ABAP Dictionary can be
found by expanding the ABAP Workbench menu tree --> 'Development'. The transaction
code to run the ABAP dictionary directly is SE11:

*] ABAP Workbench
v [T Cverview
v S Development
- [SE11 - ABAP Dictionary)
« 5011 -Da ocleler
v [J User Interface
« 7 SE35 - ABAP Editor
« £ SE37 - Function Builder
«) SE24 - Class Builder
) SE33 - Context Buider
v [Programming Environmment
« [SW0O1 - Business Ohiject Builder
v 0 workflow

v [Other Tools

#

ABAP Editor

The next and probably most commonly used part of the ABAP Workbench is the ABAP
Editor, which much of this course will focus upon. The ABAP Editor is where all of the code
is created, the logic built and, by using forward navigation (a function within an SAP
system which will be discussed later), function modules defined, screens created and so
on. The ABAP Editor can be found under the 'Development' menu, as shown above and
with transaction code SE38.

Function Builder
The next important part of the Workbench is the Function Builder, which is similar to the

ABAP Editor. Its main function is to define specific tasks that can be called from any other
program. Interfaces are created in the Function Builder, where the different data
elements and different types of tables are defined, that can be passed to and from the
Function which is built. The Function Builder will be discussed a little later on, when the
programs created are encapsulated into function modules. The Function Builder can be

27

SAP SYSTEM OVERVIEW

called with transaction code SE37.

Menu Painter

The next item to look at here is called the Menu Painter, which can be found in the 'User
Interface' folder inside the 'Development' menu, or with transaction code SE41. This is a
tool which can be used to generate menu options, buttons, icons, menu bars, transaction
input fields, all of which can trigger events within the program. You can define whether
events are triggered using a mouse click, or with a keyboard-based shortcut. For example,
in the top menu bar here, the 'Log off' button can be seen, which can be triggered by using
(Shift + F3):

F

(=

@ Al cc&e SHKE D000 PR @@
SAP Easy Access I;cng off (Shift+F3)

Screen Painter

While the Menu Painter is used for building menu items, menu bars and so on, the next
item on the list is the Screen Painter, transaction code SE51, which allows you to define
the user input screen, meaning that you can define text boxes, drop-down menus, list
boxes, input fields, tabbed areas of the screen and so on. It allows you to define the whole
interface which the user will eventually use, and behind the initial elements that are put
on the screen, you can also define the individual functions which are called when the user
interacts with them.

Object Navigator
The last item to look at here is the Object Navigator, a tool which brings together all the

previous tools, providing a highly efficient environment in which to develop programs.
When building large programs, with many function modules, many screens, the Object
Navigator is the ideal tool to use to navigate around the development. It can be found in
the 'Overview' menu of the ABAP Workbench, with transaction code SE80.

These are the main features of the ABAP Workbench interacted with during this course. In
the SAP menu tree, there are evidently many more transactions which can be used to help
develop programs, but these cover the vast majority of development tools which will be
used.

28

DATA DICTIONARY

Chapter 2: Data Dictionary

Introduction

This chapter will focus specifically on the Data Dictionary. This is the main tool used to
look at, understand and enhance the Database and Database tables which are used by the
SAP system. You can view standard tables delivered by SAP using this tool, create new
tables and enhance the existing tables delivered by SAP with new fields. There are many
other features involved in the Data Dictionary, but the focus here will be on the basic ones
so as to build on this later on when creating ABAP programs.

First, a database table will be created, involving the creation of fields, data elements and
domains. An explanation of what each of these is, and why they are necessary to the
tables built will be given. During the building of the tables, the tools used to check for
errors will be shown. Once these errors are eradicated, the tables can be activated so that
they can be used within the system.

After this, a look will be taken at maintaining the technical settings of the table created,
which will allow the entry of data, before finally looking at the data which has been
entered using standard SAP transactions available in the SAP system.

Creating a Table

With the SAP GUI open, you will be able find the Data Dictionary in the SAP menu tree.
This is done via the Tools menu. Open the ABAP Workbench and click the 'Development’
folder, where the ABAP Dictionary can be found and double-clicked. Alternatively, use the
transaction code SE11:

Now, the initial screen of the ABAP Dictionary will appear:

29

DATA DICTIONARY

o 1 & R H T O

. I
#Database table

L=

TData type
I Type Group

“Daomain
“Search help
“Lack ohject

G Display || change | |O) Create

To create a table, select the 'Database table' option. In this exercise a transparent table
will be created. Other types of table do exist (such a cluster tables and pool tables), but at
this early stage the transparent table variety is the important one to focus upon.

The table name must adhere to the customer-defined name space, meaning that the
name must begin with the letter Z or Y, most commonly this will be Z. In this example, the
table will show a list of employees within a company, so, in the 'Database table' area, type
'ZEMPLOYEES' and click the 'Create' button.

Once this is done, a new screen will appear:

30

DATA DICTIONARY

%) Diatabase table ZEMPLOYEES
=

iData type
O Type Group

) Domain
“15earch help
iLock object

G Display |2 change |ID CFE%!L{%‘E I

Dictionary: Maintain Table
E R = - I = - = | BE [l Technical settings Indexes... Append structure...

Transp. tahle ZEMPLOYEES Mei (Revised)
T

Short text |
-

Attributes ,/ Delivery and Maintenance | Fields Entry helpfcheck Currency fQuantity Fields

Delivery Class [

Data Browser Table view Maint, Display,Maintenance Alowed with Restrictions -

In the 'Short text' field, a description for the table must be included, enter 'Employees':

Transp, table ZEMPLOYEES Mewy (Revised)

=
Short text I_Empln:uyeez
In the 'Delivery and Maintenance' tab (which opens by default), look at the 'Delivery class'

section, select the field and then click the drop-down button, where a list of Delivery
classes will be shown and selected:

31

DATA DICTIONARY

[= Delivery class (1) 7 Entries found

(2L E =l E =]
D D5Short text
_ﬂj Application table (rmaster and transaction data)

Custornizing t8%le, maintenance only by cust,, not SAP import
Tahle for storing temporary data, delivered empty
Customizing table, protected against SAP Upd., only INS all,
Control table, S&P and custorner have separate key areas
Systern table, maint, only by SAP, change = modification
Systemn table, contents transportable wia separate TR objects

ELI'.IITIGjl_l'_“l

For the table being created here, choose 'Application table', as the data held in the table
fits the description 'master and transaction data'.

In the field below this, labelled 'Data Browser/Table View Maint.!, choose the
'Display/Maintenance allowed' option, which will allow for data entry directly into the
table later on. It should look like this:

Delivery Class &| Application table (master and transaction data)

Data Browser/ Table view Maint, DisplayMaintenance Alowed -

Before going any further, click the 'Save' button:
A window appears titled 'Create Object Directory Entry'.

Nearly all development work done with SAP is usually done within a development
environment, before being moved on to, for example, a quality assurance environment
and on further to production. This window allows you to choose the appropriate
Development class which is supported by other systems where the work may be moved
on to. In this example scenario, though, developments will not be moved on to another
system, so click 'Local object’, so as to indicate to the system (via the phrase 'STMP' which
appears) that the object is only to exist within the development system and not to be
transported elsewhere. Once this is done, the status bar at the bottom will show that the
object has been saved:

32

[= Create Ohject Directary Entry

DATA DICTIONARY

Chject R3TR |TAEL |ZEMPLOVEES |
Attributes
I T
Development class _|
-
Person responsible ECUSER |
Criginal systern @
Criginal language EN English

[Local chject [ﬁ Lock averview J@

Loctal ohiject (F7)

To check everything has worked as we want, select the 'Go to' menu and selects the
'Object directory entry' option, a similar pop-up box to the previous one will appear,
where the 'Development class' field will show 'STMP', confirming this has been done
correctly.

Creating Fields
The next step is to begin creating Field names for the table, in the 'Fields' tab:

o [P L) &S S E BE [[f] Technical settings Indewes... Append structure...

Tranzp. table ZEMPLOYEES MNew (Revised)

Shiort text Ermployees

attributes © Delivery and Maintenance < Fields |' Entry helpfcheck © Currency/Quantity Figlds

Mll@l @l@ %ll@l‘& @l Srch help Jl Built-in type I

Field Key | Initial val... | Data elerment DTyp Len... | Dec... Short text

CLIENT [¥] 1 MANDT CLNT 3 0lient
_— _

T —
I TJol o

Fields, unlike the name of the table, can begin with any letter of the alphabet, not just Z
and Y and can contain up to 16 characters.

33

DATA DICTIONARY

Tables must include at least one Key field, which is used later for the searching and sorting
of data, and to identify each record as being unique.

An Initial value can be assigned to each field, for example, in the case of a field called
Employee Class you could say the majority of employees are Regular Staff ('S'), but some
are Directors, with a code of 'D'. The standard initial value would be 'S', but the user could
change some of these to a 'D' later on.

Data Elements
Every Field in the table is made up of what is called a Data Element, which defines specific
attributes of each field.

The first Field to be created here is an important one within an SAP system, and identifies
the client which the records are associated with. In the Field name, enter 'Client', and in
the Data Element, type 'MANDT'. This Data Element already exists in the system, and after
entering it, the system automatically fills in the Data Type, the Length, Number of
Decimals and Short text for the Data Element itself. Ensure that the 'Client’ field is made a
Key field in the table by checking the 'Key' box.

The next field will be called 'Employee’'. Again, check the box to make this a Key field, and
enter the new Data Element 'ZEENUM' (Data Elements broadly must adhere to the
customer name space by beginning with Z or Y). Once this is done, click the save button.

Next, because the Data Element 'ZEENUM' does not yet exist, it must be created. If you try
to activate or even check the table (via the 'Check' g button), an error message is
displayed:

Check table ZEMPLOYEES (ECU3ER/11.03.12/17:50)
,ﬂ Eey field EMPLOYEE has unpermitted type
,ﬂ Field EMPLOYEE: Component type or domain used not active or does not exist
ﬂ Field EMPLOYEE cannot be used as key field because no default exists for type
,ﬂﬂame% for table ZEMPLOYEES camnot he generated

Check on table ZEMPLOYEES resulted in errors

4@ 04

Until the Data Element 'ZEENUM' is created, it cannot be used within the system. To do
this, forward navigation is used. Double-click the new Data Element, and a window
labelled 'Create Data element' appears. Answer 'Yes' to this, and the 'Maintain Data
Element' window comes up.

34

DATA DICTIONARY

[= Create Data ele

Data elermnent ZEEMUM

niot available

X

@ Create the data element?
?

_
(= L] aCE
| — N [%® cancel

Dictionary: Maintain Data Element

L btk - o 0 o
A e

&= | TR | g &g E Documentation Supplementary de

Jata elerment ZEENTTM Mesw (Revised)

Short text Ernployee Data Elernent

Attributes o Data Type Furthier Characteristics - Field label

(e)Elementary type

= -

(®) Domain | ZEE _| '

Data Type

Length 0 Decimal Places]
(IBuilt-in type Data type

Length 1] Decirmal places 0

(IReference type

(OMame of Ref. Type
(CJReference to Predefined Type

DataType
Length 1] Decirmal Places 1]

35

DATA DICTIONARY

In the 'Short text' area, enter 'Employee Data Element'. Next, the Elementary data type,
called the 'Domain’, must be defined for the new Data element. Domains must adhere to
the customer name space, so in this instance the same name as the Data element will be
given: 'ZEENUM', (though giving both the same name is not imperative). Again, forward
navigation will be used to create the Domain.

Data Domains

Double-click the entry ("ZEENUM') in the Domain area, and agree to save the changes
made. Now, the 'Create Object Directory Entry' window will re-appear and again it is
important to save this development to the 'STMP' development class, via the 'save' or
'local object' button visible in this window.

After doing this, a window will appear stating that the new Domain 'ZEENUM' does not
exist. Choose 'Yes' to create the Domain, and in the window which appears, type into the
'Short text' box a description of the Domain. In this example, 'Employee Domain':

Dictionary: Maintain Domain

= | PUE) & aE T H

Darnain ZEENTTH Mew (Revised)
Short text Employes Dommain
Attributes Definiticn Walle range
Forrnatting
—
Data type NUMC LCharan:ter string with only digits I a
Mo, characters g
Decirnal places 0

Output characteristics

Cutput length g

Canvers, routine

36

DATA DICTIONARY

The 'Definition’ tab, which, as shown above, opens automatically. The first available field
here is 'Data type', click inside the box and select the drop-down menu, and a number of
generic data types already existing within the ABAP dictionary will appear.

The 'NUMC' type is the one to be used here for the Employee data, a “character string
with only digits”. Once this selection is double-clicked, it will appear in the 'Data type' area
in the 'Definition’ tab.

Next, in the 'No. characters' field, enter the number 8, indicating that the field will contain
a maximum of 8 characters, and in the 'Decimal places' area, enter 0. An Output length of
8 should be selected, and then press Enter.

The 'NUMC!' field's description should re-appear, confirming that this is a valid entry.

Next, select the 'Value range' tab, which is visible next to the 'Definition' tab just used:

Attributes Definition - YWalue range |

EEENEEE
Single vals
Fiz wval. Shiort tesxt
[;]
!
0
Intervals
Loweer limit | UppetLinit | Short test
'

Walue table

This is where you set valid value ranges for the Domain created. Once this is set, any
subsequent user entering values outside the valid value range will be shown an error

37

DATA DICTIONARY

message and be requested to enter a valid entry. Here, there are three options.

e First, where you can see 'Single values', it is possible to enter a list of individual
valid values which can be entered by the user.

e Second, 'Intervals', where you can enter a lower and upper limit for valid values,
for example 1 and 9, which saves the effort of entering 9 individual single values in
the 'Single values' section.

e last, the 'Value table' box visible at the bottom. When there are a large number of
possible entries, this is a common method (to do this you must specify a complete
valid value table entry list, in which case it is also necessary to introduce foreign
keys to the table, to ensure the user's entries are tested against the value stored
in the value table created).

This example Domain, however, does not require any Value range entry, so just click the
save button and, again, assign it as a 'Local object'.

The next step is to Activate the object, allowing other Data elements to use this domain

going forward. In the toolbar click the small matchstick icon [(also accessible by pressing
CTRL +F3).

A pop-up window appears, listing the 3 currently inactive objects:

Transportable objects / Local ohjects |

Ohject name
C | Obj.. Obi. narme Liser
Dops ZEENTHM BCUSER
OTEL ZEENTM BCU3EER
TABL ZEMFLOYEES BCUSER

It may be possible to activate all of the objects together, but this is not advised. In a typical
development environment, a number of people will be creating developments
simultaneously, and quite often, others' objects will appear in this list.

At this point, it is only the Domain which is to be activated, the top entry labelled 'DOMA’,
with the name 'ZEENUM'. When this is highlighted, click the green tick continue button.
The window should disappear, and the status bar will display the message 'Object(s)

38

DATA DICTIONARY

activated'

Now it is possible to proceed with the creation of the table. Forward navigation was used
for generating the Domain, so click the 'Back' button, or press F3 to return to the
'Maintain Data Element' screen. As the domain is active, the description entered
previously should appear by the area where 'ZEENUM' was typed, along with other
Domain properties which have been created:

Attrbutes -~ DataType | Further Characteristics | Field label

¢ Elementary type
¢ Domain ZEENUM gplovee Domain
Data Type NUMC Character string with only digits
Length 8 Decimal Places 0

Next, the Field labels must be created, so click that tab. The Field labels entered here will
appear as field labels in the final table. In this example they should read 'Employee’, or
better, 'Employee Number'. If this does not fit within the area given, just tailor it so that it
still makes sense, for example typing 'Employee N' into the 'Short' Field label box. Once
the text has been put into the Field label spaces, press enter, and the 'Length' section will
automatically be filled in:

Data element ZEENUM New(Revised)
Short text

Attrbutes | Data Type | Further Characteristics . Field label

Length Field label

Short 10 Employee N

Medium 15 Employee NJI'LJB
Long 20 Employee Number
Heading 15 Employee Number

39

DATA DICTIONARY

Once this is complete, Save and Activate the element via the toolbar at the top. The
inactive objects window will reappear, where two inactive objects will remain. Highlight
the Data element (labelled 'DTEL') and click the green tickiZI

Continue button at the bottom.

Again, the status bar should display 'Object(s) activated'.

Press the back button to return to the Table maintenance screen. Here you will now see
that the 'EMPLOYEE' column has the correct Data Type, Length, Decimals and Short text,
thus indicating the successful creation of a Data element and Domain being used for this
Field.

Trarsp. tdle IEMPLOYEES Porw

Short taxt Employees

Attrbutes | Oelvery and Mantenance Pl | Entry helpfched: | Curmency)/Quantity Fields

Xlom| B BPEEa] AP schhep || asntoe | 1/2
Fadd Kefl Data slerment OTyp Len.. Dec.. Shorttest Group
CLIENT v F.A&::T CLNT 3 00ent
ERPLONE 1 7 e s 8 1:[—’wtrmo Data Blorment

Next, the same practices will be used to create four additional fields.

The next field to create should be titled 'SURNAME'. This time it should not be selected as
a Key field, so do not check the box. The Data element, in this instance, is labelled
'ZSURNAME":

¥ior BE P [=a) P| srchhelp || Buit-in type

Freld K.. I.. Dataelement DTyp Len... Dec... Short text
CLIENT v MARDT CLRT 3 0Ckent
EMPLOYEE v ZEENUN NUNC 8 0Employee Data Element
Ay LUIEL == R
SURNAME :.sg!mm: JO

Now, forward navigation will again be used. Double-click ZSURNAME’; choose 'Yes' to
save the table and 'Yes' again to create the new Data element. The 'Maintain Data
Element' window will appear which will be familiar from the previous steps.

In the 'Short text' box this time type 'Surname Data Element' and title the new domain

40

DATA DICTIONARY

'ZSURNAME':
Data element ZSURNAME New (Revised)
Shoet text Surname Data Blement
Attrbutes ‘Data Type | Further Characteristics - Field label
¢ Elementary type
* Domain z3
Data
Length 0 Decimal Places 0

Double-click the new domain and save the Data element, assigning it a 'Local object' and

then choose 'Yes' to create the new Domain.

The Domain maintenance screen will reappear. Enter the short text 'Surname' and, this
time; the Data type to select is 'CHAR', a Character string.

The number of characters and output length should both be set to 40, then press enter to
be sure everything has worked, and click the Activate button.

Dictionary: Maintain Domain
& 5 UG hd} FE = | |

Activate (Ctrl+F3)

Domain ZSURNAM.
=
Short text L

. Attributes /‘Definition | Value range

| New(Revised)

Formatting
Data type CHAR Character string
No. characters 40

Decimal places

o

Output characteristics
Output length 40
Convers, routine

Lowercase

41

DATA DICTIONARY

Note that the Save button has not been pressed this time, as the Activate button will also

save the work automatically. Ensure you assign the object to the STMP development class

as usual.

In the Activate menu, select the object (the domain (labelled 'DOMA') named
'ZSURNAME') to be activated, and click the green tick continue button. The status bar

should read 'Object saved and activated'.

Following this, click Back or F3 to return to the Maintain Data element screen. Ensure the

domain attributes have appeared (Short text, Data type, Length and so on). In the Field

Label tab, enter 'Surname' in each box and press Enter to automatically fill the 'Length’

boxes and then activate the Data element (in the Activate menu, the 'DTEL' object named

'ZSURNAMES'), checking the status bar to ensure this has occurred with any errors:

Dictionary: Maintain Data Element
¢ s Pug & R‘td} e &0 H

Data element zsumman cUvate (Ctrl+F3)
I,
Short text joumame Data Bement

Attributes Data Type Further Characteristics

Length
Short 10
Medium 15
Long 20
Headng 40

Field label
Sumame
Sumname
Sumame

Sumname

Documentation Supplementary documentat

New(Revised)

Field label

Again, press Back to return to the Maintain Table screen, where the new Data element will

be visible:

42

DATA DICTIONARY

Transp. table \ZEMPLOYEES New
Short text Employees

Attrbutes | Delivery and Maintenance /Fields | Entry help/check | Currency/Quantity Fields

Xom B = [FFER] L] scohee |[sutntee |
Feid

] K.. L. Dataelement DTyp Len.. Dec... Short text
CLIENT v MANDT CLNT 3 0Ckent
EMPLOYEE W [zEEWUM WUMC 8 0Employee Data Element
SURNANE 0 0 zsurne CHAR 40 0Sumname Data Element

The next field to be created is titled 'FORENAME', and the data element 'ZFORENAME'.
Click to create the Data element and follow the steps above again.

In the Maintain Data Element screen, the Short text should read 'Forename Data Element'
and the domain 'ZFORENAME'. Save this and choose 'Yes' to create the domain.

The domain's short text should read 'Forename'. Use the CHAR data type again and a
Length and Output length of 40. Next, Activate the Domain as before.

Return to the Maintain Data Element screen. Type 'Forename' into the four Field label
boxes. Press enter to fill the length boxes and then Activate the Data Element named
'ZFORENAME' as before. Go back again to see the table:

Transp. table \ZEMPLOYEES | New
Short text Employees

Attrbutes - Delivery and Maintenance ,&mi Entry help/check | Currency/Quantity Fields

¥R BE [EFEER] L] s || sutnype |
Field

K.. L.. Dataelement DTyp Len.. Dec.. Shorttext
 CLIENT v MANDT CLNT 3 0Cient
EMPLOYEE ; ZEENUN WuMC 8 0Employee Data Element
SURNAME] [ZSURNAME CHAR 40 0Surname Data Blement
 FORENAME 1 ZFORENANE CHAR 40 0Forename Data Element

43

DATA DICTIONARY

The next field will be called 'Title' and the Data Element 'ZTITLE', follow the steps above
again to create this field with the following information:

The Data element short text should read 'Title Data Element' and the domain should be
named 'ZTITLE'.

The Domain Short text should be 'Title' and the Data type is again 'CHAR'. This time the
Length and Output length will be 15.

The Field labels should all read 'Title'.
Activate all of these and go back to view the new, fifth field in the Table.

The final field which will be created for this table is for Date of Birth. In the Field box type
'DOB' and create the Data element 'ZDOB' using the steps from the previous section and
this information:

The Data element short text should read 'Date of Birth Data Element' and the domain
should be named 'ZDOB'.

The Domain Short text should be 'Date of Birth' and the Data type is, this time, 'DATS',
after which an information box will appear to confirm this. Click the green tick to continue:

DTyp DT... Short text

ACCP Posting period YYYYMM

CHAR Character string

CLNT Client

CQUKY Currency key, referenced by CURR fields
CURR 1 Currency field, stored as DEC

DATS 4 Date field (YYYYMMDOD) stored as char(8)
DEC Counter or amount field with comma and sign
FLTP Floating point number, accurate to 8 bytes
INT]{Q 1-byte integer, integer number <= 255

INT2 2-byte integer, only for length fiekd before LCHR or LRAW
INT4 4-byte integer, integer number with sign

44

DATA DICTIONARY

(& Information

ﬂ :_httrbutes of data type DATS are corrected (have
fixed assignments)

For the DATS data type, the Length and Output lengths are set automatically at 8 and 10
(the Output length is longer as it will automatically output dividers between the day,
month and year parts of the date).

The Field labels should all read 'Date of Birth', except the 'Short' label where this will not
fit, so just type 'DOB' here. Activate the Domain and Data element, and return to the
table.

Transp. table \ZENPLOYEES New
Short text Ermnployees

_ Attributes | Delvery and Maintenance /(Fields | Entry helpjcheck | Currency/Quantity Fields

Xo@ BRE [(FPEE[a] ¥ schneo |[eutintpe |

Field K.. L.. Dataelement DTyp Len.. Dec... Short text
 CLIENT v MANDT CLNT 3 0Cient
EMPLOYEE v ZEENUN RUNC 3 0Employee Data Element
SURNAME (][] ZSURNAME CHAR 40 0Surname Data Element
FORENAME ‘ ZFORENAME CHAR 40 OForename Data Element
TITLE ZTITLE CHAR 15 0Title Data Element
D08 1l ZDOB DATS 8 0Date of Brth Data Element

Technical Settings

Once this has been saved, the next step is to move on to maintaining the technical settings
of the Table. Before creating the final Database table, SAP will need some more
information about the table being created.

Select 'Technical settings' via the toolbar above the table, through the 'Go to' menu, or

45

DATA DICTIONARY

with the shortcut CTRL+SHIFT+F9.

Here, it is important to tell the system what Data class is to be used, so select the drop
down button. There are five different options, with accompanying descriptions. For this
table, select the first, labelled 'APPLO', and double-click it:

Dictionary: Maintain Technical Settings Nnelil
Y 68 Revised<>active T H

Name ZEMPLOYEES Transparent Table
Short text Employees
Last changed BCUSER 11.03,2012
Status Néw Not saved
Logica storage parameters
- S
Data class J ‘Fh
Size category ~

E:'F'-‘-h::;t:hﬁ Entries: Data Class

Data class|Description

APPLO Master data, transparent tables
APPLL Transaction data, transparent tables
AFPPLZ Organizacion and customizing

USER Cuscomer data class

USERL Customer data class

w”)| System data types |[%

For the 'Size category' field, again click the drop-down button. Here, you have to make an
estimate as to the amount of data records which will be held within the table so that the
system has some idea of how to create the tables in the underlying database. In this
instance, it will be a relatively small amount of information, so select the first size
category, labelled O:

46

DATA DICTIONARY

ze CateQory

SzCat| Number of data records of table expected
D 0 to 5.300
1 h 5.300 ©o 21.000
2 21.000 to 86.000
3 86.000 to 340.000
4 340.000 to 1.300.000
5 1.300.000 to 2.700.000
6 2.700.000 to 110.000.000

(it

Below this are the Buffering options. Here, '‘Buffering not allowed' should be selected:

Buffering
= Buffering not.
Buffering alowed switched off
Buffering switched on

This prevents the table contents from being loaded into memory for reading, stopping the
table from being read in advance of the selection of the records in the program. You may,
correctly, point out that it may be advantageous to hold the table in the memory for
speed efficiency, but in this example, this is not necessary. If speed was an issue in a
development, buffering would then be switched on, ensuring the data is read into
memory. In the case of large tables which are accessed regularly but updated
infrequently, this is the option to choose.

Nothing else on the 'Maintain Technical Settings' screen needs to be filled at this point, so
click Save and then go back to the table itself. If all of this is successful, then the table
should now be in a position to be activated and the entry of records can begin. Click the
Activate icon to activate the table and check the status bar, which should again read
'Object Activated'.

47

DATA DICTIONARY

Entering Records into a Table

Now that the table has been created, data can be entered. To do this, enter the 'Utilities'
menu, scroll to 'Table contents', and then 'Create Entries':

Utiities | Extrgs Enyironment System Help

Settings... 88 ‘@ i
Display gbject list Ctri+Shift+FS

' Worklist »

. Display nawvigation window Ctri+Shift+F4 Diice wdeves. Aeoand st
Activation log

| Database utiity
Database object »
Runtime Object »
Graphic Ctrl+Shift4+F11 ch!fm/wuw Fazlcts
Table maintenance generator
Takle contents » Qisplay Ctrl+Shift+F10 i
Where-used kst Ctri+Shift+F3 Create enty i
Versions ’ [0Ckent

A Data-entry screen will appear which has automatically been generated from the table
created. The field names correspond here to the technical names given when we created
them. To change these to the Field labels which we set up, enter the 'Settings' menu and
select 'User Parameters'. This facility allows you to tailor how tables look for your own
specific user ID. Select the 'Field label' radio button and click 'Continue':

Keyword
__Field name

~

C Field Label

Format

Check conversion exits

48

DATA DICTIONARY

The Field labels created will now appear as they were defined when creating the table:

Table ZEMPLOYEES Insert

Reset

Chent
Emploves Number

Surname

For =]
T!t:-ﬁn

Date of Birth

The Employee Number field is limited to 8 characters, and the data type was set to NUMC,
so only numerical characters can be entered. Create a record with the following data:

e Employee Number: '10000001'
e Surname: 'Brown'

e Forename: 'Stephen’

e Title: 'Mr'

e Date of Birth: '16.02.1980":

Table ZEMPLOYEES Insert
Resat

Chent
Employes Number 10000001

Surname Browm
Forename Stephen
Title b4

= =1
Date of Birth Llﬁ.az.mau[.:j

Press Enter and the system will automatically put the names in upper case, and validate
each field to ensure the correct values were entered:

49

DATA DICTIONARY

Table ZEMPLOYEES Insert

Reset
Chent
Empioyes Number
Surname BROWN
Forename STEFHEN
Title HRI
Date of Birth 16,02, 1580

Click Save and the status bar should state 'Database record successfully created'. Next,
click the 'Reset' button above the data entry fields to clear the fields for the next entry.

Create another record with the following data:

e Employee Number '10000002'
e Surname 'Jones'

e Forename 'Amy'

e Title 'Mrs'

e Date of Birth '181169'".

Note that this time the Date of Birth has been filled in without the appropriate dividers.
When Enter is pressed, the system automatically validates all fields, correcting the Date of
Birth field to the correct formatting itself:

Chent
Employes Number 10000002

Surname Jones
Forename Amy
Tithe MR=
Date of Birth 181169

50

DATA DICTIONARY

Surname JONES
Forename AMY

Title MRS

Date of Birth 18.11.1969

Save, Reset, and then further records can be entered following the same steps:

Cient
5 .l
Employee Number L,.

Surname MICHAELS
Forename ANDREW
Title MR

Date of Brth 01.01.1977

Note that if dates are entered in the wrong format, an error message will appear in the
status bar:

Date of Birth

D Enter date in the format __.__.

Viewing the Data in a Table

Now that data has been entered into the table, the final few steps will allow this data to
be viewed.

Having entered several data records in the manner discussed previously, click the Back key
to return to the 'Dictionary: Display Table' screen. To view the table created with the data
entered, from the 'Utilities' menu, select 'Table contents' and then 'Display':

o1

DATA DICTIONARY

Utdmesq], Extras Erwironment System Help

Setts. £0 D O®

Display object list Ctrl+Shift+F5

| worklist b

. Deplay navigation window Ctri+Shift+F4

I pttings Indexes... Append stru
Activation log

t Databasa utility

[[atahase object [
Runtirme Object »
Graphic CtrShift+F11 Currency/Quantity Fields
Table maiptenance generator
Tabke contents » CtrieShift+F10
Where-used kst Ctri+Shift+F3 Creals entries

Wersons ¥ | 0bent
T TR i1 i =3 N Errardowsmi, Cisd s Charmeed

A selection screen will then appear, allowing you to enter or choose filter values for the
fields you created. The selection screen is very useful when you have lots of data in your
table. In this case, though, only five records have been entered, so this is unnecessary.
However, for example if you were to only want to focus on a single employee number, or
a small range, these figures can be selected from this screen:

'CB '& B B tiumber of entries
Employee Number w 1 (®]

To view all of the records, do not enter any data here. Just click the 'Execute' button,
which is displayed in the top left corner of the image above, or use the shortcut F8. You
will now see a screen showing the data records you entered in the previous section:

52

Data Browser: Table ZEMPLOYEES Select Entries 5

R7/«@APBERQB

DATA DICTIONARY

-
E Liart th 0250
4
Client|Esployes Nusber| Sucnass Forenass Title Data of Birth
000 10000001 BR0TH STEFHEN AR 16.03.1980
o 10000002 JONES Y MRS 18.11.1969
000 10000003 MICHAELZ ANTREW MR 01.01.1977
o0 10000004 MICHOLS BRENDAN L 02.12.1958
000 100000035 HILLF ALICE HR3 16.08. 2000

If further fields were to exist, the screen would scroll further to the right, meaning not all
fields could be displayed simultaneously due to field size properties.

If you want to see all of the data for one record, double-click on the record and this will be

shown. Alternatively, several records can be scrolled through by selecting the desired

records via the check-boxes to the left of the 'Client' column and then clicking the 'Choose’

]

icon on the toolbar: =&

These can then be individually viewed and scrolled through with the 'Next entry' button:

E:

Table ZEMPLOYEES Display

Surmame
Forename
Title

Date of Brth

0oo
10000001

BROWN
STEFHEN
HE

16.02. 1980

To return to the full table then, simply click the Back button, or press F3.

Experiment with the table created, using the toolbar's range of options to filter and sort

the information in a number of ways:

53

DATA DICTIONARY

Dr7seTATFEEZQH

For example, to organise alphabetically by forename, click to select the 'Forename' field,

&

and then click the 'Sort ascending' button:

There are a number of things which can be achieved in this table view, and it can be a
useful tool for checking the data within an SAP system without going through the
transaction screens themselves.

54

YOUR FIRST ABAP PROGRAM

Chapter 3

Creating a Program

To begin creating a program, access the ABAP Editor either via transaction code SE38, or
by navigating the SAP menu tree to Tools = ABAP Workbench - Development, in which
the ABAP Editor is found. Double-click to execute.

A note to begin: it is advisable to keep the programs created as simple as possible. Do not

make them any more complicated than is necessary. This way, when a program is passed
on to another developer to work with, fix bugs and so on, it will be far easier for them to
understand. Add as many comments as possible to the code, to make it simpler for
anyone who comes to it later to understand what a program is doing, and the flow of the
logic as it is executed.

The program name must adhere to the customer naming conventions, meaning that here
it must begin with the letter Z. In continuation of the example from the previous chapter,
in this instance the program will be titled ‘Z_Employee_List_01’, which should be typed
into the ‘Program’ field on the initial screen of the ABAP Editor. Ensure that the ‘Source
code’ button is checked, and then click ‘Create’:

55

YOUR FIRST ABAP PROGRAM

ABAP Editor: Initial Screen
4o 1 @ :é' Fae i T ﬁb @E»Bbuggng @Wsth Variant &\-’anants

f 1
Program LZ_Enploye e_List_OlI _,5 D Cre.

Subobjects
« Source code
Variants
Attributes
Documentation
Text elements

S Display Vd Change

A ‘Program Attributes’ window will then appear. In the ‘Title’ box, type a description of
what the program will do. In this example, “My Employee List Report”. The Original
language should be set to EN, English by default, just check this, as it can have an effect on
the text entries displayed within certain programs. Any text entries created within the
program are language-specific, and can be maintained for each country using a translation
tool. This will not be examined at length here, but is something to bear in mind.

In the ‘Attributes’ section of the window, for the ‘Type’, click the drop-down menu and
select ‘Executable program’, meaning that the program can be executed without the use
of a transaction code, and also that it can be run as a background job. The ‘Status’ selected
should be ‘Test program’, and the ‘Application’ should be ‘Basis’. These two options help
to manage the program within the SAP system itself, describing what the program will be
used for, and also the program development status.

For now, the other fields below these should be left empty. Particularly ensure that the
‘Editor Lock’ box is left clear (selection of this will prevent the program from being edited).
‘Unicode checks active’ should be selected, as should ‘Fixed point arithmetic’ (without
this, any packed-decimal fields in the program will be rounded to whole numbers). Leave
the ‘Start using variant’ box blank. Then, click the Save button.

56

YOUR FIRST ABAP PROGRAM

[S ABAP: Prograrn Attributes Z_EMPLOYEE_LIST _01 Change

! My Ernployee List Report

Criginal language EN English
Created 07.04.2012 ECUSER
Last changed by
Status New(Revised)
Attributes
Type Executable programm -
Status Test program -
Application Basis -
Authorization Group
Logical database
Selection screen
Editor lock ¥ |Fixed point arthmetic
+|Unicode checks active | Start using variant

i R

Save (Enter) —

The familiar ‘Create Object Directory Entry’ box from the previous section should appear
now, click the ‘Local object’ option as before to assign the program to the temporary
development class. Once this is achieved, the coding screen is reached.

Code Editor

Here, focus will be put on the coding area. The first set of lines visible here are comment
lines. These seven lines can be used to begin commenting the program. In ABAP,
comments can appear in two ways. Firstly, if a * is placed at the beginning of a line, it
turns everything to its right into a comment.

S7

YOUR FIRST ABAP PROGRAM

& Report Z_EMPLOYEE LIST 0l

L PR ——— *
Y- *
Ly I k3
TFI:; ___ w

Note that the * must be in the first column on the left. If it appears in the second column
or beyond, the text will cease to be a comment.

A comment can also be written within a line itself, by using a “. Where this is used,
everything to the right again becomes a comment. This means that it is possible to add
comments to each line of a program, or at least a few lines of comments for each section.

Report Z_EMPLOYEE LIST 01

TS o o om0 S . k3
LY~ *
B o e e . e e w
REPORT 2 _EMPLOYEE LIST 01 . " this ig a comment

The next line of code, visible above, begins with the word REPORT. This is called a
STATEMENT, and the REPORT statement will always be the first line of any executable
program created. The statement is followed by the program name which was created
previously. The line is then terminated with a full stop (visible to the left of the comment).

Every statement in ABAP must be followed by a full stop, or period. This allows the
statement to take up as many lines in the editor as it needs, so for example, the REPORT

statement here could look like this:

Z_EMPLOYEE_LIST 01 1

58

YOUR FIRST ABAP PROGRAM

As long as the period appears at the end of the statement, no problems will arise. It is this
period which marks where the statement finishes.

If you require help with a statement, place the cursor within the statement and choose
the ‘Help on...” button in the top toolbar:

ABAP Editor: Change Report Z_EMPLOYEE_LIST_01
= 098 1@ H BT @ Pattemn Pretty Printer

Report Z EMPLOYEE_LIST 01 e 0. (Cukife)

[0 2)Cy) ()58 2908
e e e e S e e e e e e e sl
*& Report Z_EMPLOYEE LIST Ol d
*e B
S -
B e e e e e e e e e e -
REPORT

Z EMPLOYEE_LIST 01

A window will appear with the ABAP keyword automatically filled in. Click the continue
button and the system will display help on that particular statement, giving an explanation
of what it is used for and the syntax. This can be used for every ABAP statement within an
SAP system. Alternatively, this can be achieved by clicking the cursor within the
statement, and pressing the F1 key:

59

YOUR FIRST ABAP PROGRAM

rd Documentation
CIEREE=E I RN
~ (J ABAP - The SAP Programming Language
~ & ABAP - By Theme

>

v @ Introduction to ABAP Syntax Diagram
+ & The ABAP Programming Language

» @ aBAP User Dialogs

~ & ABAP Program Execution REPORT

» & Processing blocks
~ & Introductory Statements for Progral

+ @ PROGRAM Basic form
+ @ REPORT

+ & FUNCTION-POOL REPORT fep.
- & (LASS-POOL

- & INTERFACE-POOL Extras:

-+ & TYPE-POOL

. HO STAHNDARD PAGE HEADING

» & Screen Sequences .
. LINE-SIZE col

1%
» @ starting programs 2.
* & ABAP Database Accesses 3. ... LINE-COUNT (m)
» OABAP Objects 4 ... MESSAGE-ID mid
’ 0 ABAP Unicode 5. ... DEFINING DATABASE 1ldb
» @ ABAP Data and Communication Interfac
Effect

» & ABAP - Overview Diagrams
» @ 2BAP - Tools

» @ ABAP Changes by Release REPORT is the first statement in a program. rep can be any name, but you are

recommended to use the name of the ABAP program
Example
REPORT ZREPHAME .

Note
4)

. Only standard SAP reports should begin with 'R
Exam . 'e Ll Drap Addition 1 3

A further tip in this vein is to use the ‘ABAP Documentation and Examples’ page, which
can be accessed by entering transaction code ABAPDOCU into the transaction code field.
The menu tree to the left hand side on this screen allows you to view example code, which
one’s own code can later be based upon. This can either be copied and pasted into the
ABAP editor, or experimented with inside the screen itself using the Execute button to run
the example code:

60

YOUR FIRST ABAP PROGRAM

ABAP Documentation and Examples
vaRO@ZEae =

~ Y= ABAP Documentation and Examples & ABAP Edtor “@ Execute

~ (i BC - ABAP Programming e -
> @ ABAP mtrwmtm = emo_ e O_VOI .

+ [2The ABAP Helo World P1|[+ seydleson screen
~ U4 The ABAP Programming Larv|(| PARAMETERS input(l2) TYPE c DEFAULT 'Hello World!'.
~ (£ Basic Staterents
[Data Types and Dataf|| " Pynpro
- [:joemmstramn of CALL SCREEN 100,
* By Elementary TYPE(|| + 14ar
+ B Demonstration of || skIp To LINE 10.
= Demonstration of{|| POSITION 40.
« By Demonstration of ||| YRITE input.
Process Data
Field Symbols and Da
Logical Expressions
Controlling the Progr:
Processing Large Dataset
Saving Data Externally
Modularization Technigue
Special Techniques

v v v -

Returning to the ABAP editor now, the first line of code will be written. On the line below
the REPORT statement, type the statement: write ‘HELLO SAP WORLD’.

FEPORT Z_EMPLOYEE LIST 01

write "HELLO 34F IlII]Rl.D'.l

The write statement will, as you might expect, write whatever is in quotes after it to the
output window (there are a number of additions which can be made to the write
statement to help format the text, which we will return in a later chapter).

Save the program, and check the syntax with the ‘Check’ button in the toolbar (or via CTRL
+ F2). The status bar should display a message reading “Program Z_EMPLOYEE_LIST 01 is
syntactically correct”. Then, click the ‘Activate’ button, which should add the word ‘Active’
next to the program name. Once this is done, click the ‘Direct processing’ button to test
the code:

61

YOUR FIRST ABAP PROGRAM

ABAP Editor: Change Report Z_EMPLOYEE_LIST_01
= YN B £ %ceo sa & 1 H @ ratten Pretty Printer

—Direct processing (F8)

Repart 2_EMPLOYEE L. \ctive

REPORT Z_EMPLOYEE LIST 01

write 'HELLO 3AP WORLD'.

The report title and the text output should appear like this, completing the program:

My Employee List Report

-
My Employee List Reporc

HELLD 3SAP HDHL&

Write Statements

Now that the first program has been created, it can be expanded with the addition of
further ABAP statements. Use the Back button to return from the test screen to the ABAP

editor.

Here, the tables which were created in the ABAP Dictionary during the first stage will be
accessed. The first step toward doing this is to include a table’s statement in the program,
which will be placed below the REPORT statement. Following this, the table name which

62

YOUR FIRST ABAP PROGRAM

was created is typed in, z_employee list 01, and, as always, a period to end the
statement:

REPORT Z_FMPLOYEE LIST 01

tables z_employee lise 01.

write °"HELLD SAF WORLD'.

While not essential, to keep the format of the code uniform, the Pretty Printer facility can
be used. Click the ‘Pretty Printer’ button in the toolbar to automatically alter the text in
line with the Pretty Printer settings (which can be accessed through the Utilities menu,
Settings, and the Pretty Printer tab in the ABAP Editor section):

[& User-Spedific Settings

Workbench (Generd) . ABAP Editor | Class Builder I S

__ Editor _Pretty Printer | Splitscreen - HTTP Debugging |

A

&
v Indent
v Convert upper-flowercase
DLowercase
Uppercase
* Keyword Uppercase
“Keyword Lowercase

AY
X

Once these settings have been applied, the code will look slightly tidier, like this:

63

YOUR FIRST ABAP PROGRAM

FEPORT =z_employee_list 01

[TABLES z_employee list 01.

WEITE 'HELLOD SAF WORLD'.

Let us now return to the TABLES statement. When the program is executed, the TABLES
statement will create a table structure in memory based on the structure previously
defined in the ABAP Dictionary. This table structure will include all of the fields previously
created, allowing the records from the table to be read and stored in a temporary
structure for the program to use.

To retrieve from our data dictionary table and place them into the table structure, the
SELECT statement will be used.

Type SELECT * from z_employee_list_01. This is telling the system to select everything
(the * refers to all-fields) from the table. Because the SELECT statement is a loop, the
system must be told where the loop ends. This is done by typing the statement
ENDSELECT. Now we have created a select loop let’s do something with the data we have
are looping through. Here, the WRITE command will be used again. Replace the “write
‘HELLO SAP WORLD’.” line with “write z_employee_list_01.” to write every row of the
table to the output window:

FEFORT = _employee_list 0L
TABLE? z_employes list Ol.
SELECT * FROM z_employes list 01,

WRITE z_enpluyee_list_ﬂll
ENDSELECT.

Check the code with the ‘Check’ button, and it will state that there is a syntax error:

64

YOUR FIRST ABAP PROGRAM

] 2] (=]

Syntax error
Description Ry Type
Program £_EMPLOYEE_LIST_01 11 @D

The Dictionary structure or table "Z_EMPLOYEE_LIST_01" is either not
active or does not exist,

The cursor will have moved to the TABLES statement which was identified, along with the
above warning. The name “Z_EMPLOYEE_LIST_01" appears to be incorrect. To check this,

open a new session via the New Session button in the toolbar . Execute the ABAP
Dictionary with transaction code SE11, search for Z* in the ‘Database table’ box and it will
bring back the table ZEMPLOYEES, meaning that the initial table name
Z _EMPLOYEE_LIST_01 was wrong. Close the new session and the syntax error window and
type in the correct table name ‘ZEMPLOYEES’ after the TABLES state. Your screen should
look like this:

FEFORT = _employee list 0l
TABLES zemployees,
SELECT * FROM zemployees.

WRITE =zemplovees.
ERDSELECT.

Save the program and check the code, ensuring the syntax error has been removed, and
then click the Test button (F8) and the output window should display every row of the
table:

My Employee List Report

-
Ny Employes List Rsport

0001000000 LEBROWH STEPHEN ME 19800216
0O00LODO00D00ZT0NES AMYT MRS 1969

000L0000003MICHAELS ANDREN MR 19770101
000L0000004NICHOLS BRENDAN 13 19581202
00010000005MILLS ALICE MRS 20000818

65

YOUR FIRST ABAP PROGRAM

Look at the data in the output window. The system has automatically put each line from
the table on a new row. The WRITE statement in the program did not know that each row
was to be output on a new line; this was forced by some of the default settings within the
system regarding screen settings, making the line length correspond to the width of the
screen. If you try to print the report, it could be that there are too many columns or
characters to fit on a standard sheet of A4. With this in mind, it is advisable to use an
addition to the REPORT statement regarding the width of each line.

Return to the program, click the REPORT statement and press the F1 key and observe the
LINE SIZE addition which can be included:

Addition 2
. LINE-SIZE col
Effect

Creates a report with eol columns per line.

If the LINE-SIZE specification is missing, the line length corresponds to the current screen
width. The system field SY-LINSZ contains the current line size for generating lists. The
maximum width of a list is 1023 characters. You should keep lists to the minimum possible
size to improve useability and performance (recommendation: LINE-SIZE < 132). For very
wide lists (LINE-SIZE > 255), you should consult the notes for using LINE-SIZE

greater than 255

Notes

e The specified LINE-SIZE must not appear in quotation marks

o [f the you want the report list (i.e. the output) to be printable, do not define a LINE-
SIZE with a value greater than 132 because most printers cannot handle wider lists.
You cannot print lists wider than 255 characters at all using the standard print
functions. To print the contents of the lists, you need to write a special print routine
that arranges the data in shorter lines (for example, using the PRINT 0N addition in
the NEW-PAGE statement

o At the beginning of a new list level, you can set a fixed line width for the level using
the ... LINE SIZE addition to the NEW-PAGE statement.

Example

REPORT ZREPHAME LINE-SIZE 132.

In this example, add the LINE-SIZE addition to the REPORT statement. Here, the line will be
limited to 40 characters. Having done this, see what difference it has made to the output
window. The lines have now been broken at the 40 character limit, truncating the output

66

YOUR FIRST ABAP PROGRAM

of each line:

FEPORT =z _employee list 01 LINE-SIZE 40
TABLES zemployees,
SELECT * FROM zemployees.

WERITE =zemployees.
ERDSELECT.

My Employee List Report

! A

My Employee List Report 1

00010000001 BROWN
0DOLODO000ZJTONES
0DOLOD00D03MICHAELS
Q0010000004 ICHOLS
00OLO00000SMILLS

Bear these limits in mind so as to avoid automatic truncation when printing reports. For a
standard sheet of A4 this limit will usually be 132 characters. When the limit is set to this
for the example table here, the full table returns, but the line beneath the title ‘My
Employee List Report’ displays the point at which the output is limited:

My Employee List Report
My Employee List Report 1
00010000001BROWN STEPHEN MR 19800216 Q
00010000002T0NES ANY MRS 19691118
00010000003MICHAELS ANDREW MR 19770101
00010000004NICHOLS BRENDAN MR 19581202
0001000000SMILLS ALICE MRS 20000816

Next, the program will be enhanced somewhat, by adding specific formatting additions to
the WRITE statement. First, a line break will be inserted at the beginning of every row that
is output.

67

YOUR FIRST ABAP PROGRAM

Duplicate the previous SELECT — ENDSELECT statement block of code and place a ‘/’ after
the WRITE statement. This will trigger a line break:

FEPORT = _employee list 01 LINE-3IZE 132

TABLES zemployees.

FEEE R R E R E RN BN E N E R R RN E R AN ENE RN EN RN IR

SELECT * FROM zemployees.
WRITE =zemplovees.
ERDSELECT.

ZELECT * FROM zemployees.
WRITE / kemployees.
ENDSELECT. I

Save and execute the code. The output window should now look like this:

My Employee List Report
!
My Employee List Report 1
00010000001BROVN STEPHEN MR 19800216
00010000002J0NES AMY MRS 19691118
00010000003MICHAELS ANDREW MR 19770101
00010000004NICHOLS BRENDAN MR 19581202
0001000000SMILLS ALICE MRS 20000816
00010000001BROWN STEPHEN MR 19800216
00010000002J0NES AMY MRS 19691118
00010000003MICHAELS ANDREW MR 19770101
00010000004NICHOLS BRENDAN m 19581202
00010000005MILLS, MRS 20000816

ALICE
y

The first SELECT loop has created the first five rows, and the second has output the next
five.

Both look identical. This is due to the LINE-SIZE limit in the REPORT statement, causing the
first five rows to create a new line once they reached 132 characters. If the LINE-SIZE is
increased to, for example 532, the effects of the different WRITE statements will be
visible:

My Employee List Report

00010000001BROUN STEPHEN MR 1980021 00010000002J0NES Ay
00010000005MILLS ALICE MRS 2000081

00010000001BROVN STEPHEN MR 19800216

000100000027 ONES ANY MRS 19691118

00010000003MICHAELS ANDREW MR 19770101

00010000004NICHOLS BRENDAN MR 19581202

0001000000SMILLS ALICE MRS 20000816

68

YOUR FIRST ABAP PROGRAM

The first five rows, because they do not have a line break in the WRITE statement, have
appeared on the first line up until the point at which the 532 character limit was reached
and a new line was forced. The first four records were output on the first line. The 5
record appears on a line of its own followed by the second set of five records, having had
a line break forced before each record was output.

Return the LINE-SIZE to 132, before some more formatting is done to show the separation
between the two different SELECT loops.

Above the second SELECT loop, type ULINE. This means underline.

A A B el e 't e Tt B

A EE N T R R E N T R A R RN E N T R R RN E RN T RN E RN TR RN ERN TR ENERS
SELECT * FROM zemployees,

WRITE =zemployees.
ERDSELECT.

ULINE.
SELECT * FROM zemplayees,

WRITE [/ zemployess,
ENDZELECT.

Click the ULINE statement and press F1 for further explanation from the Documentation
window, which will state “Writes a continuous underline in a new line.” Doing this will
help separate the two different SELECT outputs in the code created. Execute this, and it
should look like so:

My Employee List Report

A

My Employee List Report 1
0001000000 1BROVN STEPHEN 133 19800216
00010000002 T0NES AT MRS 19691118
00010000003MICHAELS ANDREW 133 19770101
00010000004NICHOLS BRENDAN HR 19581202
00010000005MILLS ALICE HRS 20000816
U@lDEUUUU;BFUIﬂ.‘I STEPHEN MR 19800216
00010000002T0NES AMY HES 19691118
00010000003MICHAELS ANDEEW HR 19770101
000L0000004NICHOLS ERENDAN HE. 19581202
00010000005MILLS ALICE RS 20000816

Duplicate the previous SELECT — ENDSELECT statement block of code again, including the

69

YOUR FIRST ABAP PROGRAM

ULINE, to create a third SELECT output. In this third section, remove the line break from
the WRITE statement and, on the line below, type “WRITE /.” This will mean that a new
line will be output at the end of the previous line. Execute this to see the difference in the
third section:

T TN I T AN I N A AT EN N AN EN AN ENENAEONENENN

JELECT * FROM zemployees,
WRITE zemployees.
ENDZELECT.

ULINE.

SELECT * FROM zemployees,
WRITE / zemployees.

ENDSELECT.

ULINE.

SELECT * FROM zemployees,
WRITE =zemployees.

write f.
ERDSELECT.
I

00010000001BROWVN STEPHEN MR 19800216
00010000002J0NES ANY MRS 19691118
0O0010000003MICHAELS ANDREW MR 18770101
00010000004NICHOLS BRENDAN MR 19581202
0001000000SMILLS ALICE MRS 20000816

Now, create another SELECT loop by duplicating the second SELECT loop. This time the
WRITE statement will be left intact, but a new statement will be added before the SELECT
loop: SKIP, which means to skip a line. This can have a number added to it to specify how
many lines to skip, in this case 2. If you press F1 to access the documentation window it
will explain further, including the ability to skip to a specific line. The code for this section
should look like the first image, and when executed, the second:

70

YOUR FIRST ABAP PROGRAM

TLINE.

BEIP z.
SELECT * FROM zemployees.
WRITE / zemployees.

ENDSELECT.
UUULUUUUUUDIILLLD ALivrn e <4uuuuolio
00010000001BROVH STEPHEN ® 19800216
00010000002J0NES ANY MRS 19691118
00010000003MICHAELS ANDREW R 13770101
00010000004NICHOLS BRENDAN m 19581202
0001000000SMILLS ALICE MRS 20000816

Our program should now look as shown below. Comments have been added to help
differentiate the examples.

ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LINE-ERELK
WRITE / zemployees.
END JELECT.

ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LINE-EREAE
WERITE =zemployvess. " aftervthe first row is output.
WRITE /.

ERDSELECT.

ULINE.

JEIP 2.

SELECT * FROM zemployees, " HasicISElect Loop with a SEIF statement
WRITE / semployees.

ERDSELECT.

Output Individual Fields

Create another SELECT statement. This time, instead of outputting entire rows of the
table, individual fields will be output. This is done by specifying the individual field after
the WRITE statement. On a new line after the SELECT statement add the following line
WRITE / zemployees-surname. Repeat this in the same SELECT loop for fields Forename
and DOB. Then execute the code:

71

YOUR FIRST ABAP PROGRAM

SEIP Z.

SELECT * FROM zemployees. " Basic Select Loop with indiwidual fields
WRITE / zemployess-surname.” being ouput
WRITE / zemployees-forenams,
WRITE 7 zemplwees—duh.|

ERDSELECT.

BROWN
STEPHEN
16.02.1980
JONES

AMY
18.11.1969
MICHAELS
ANDREW
01.01.1977
NICHOLS
ERENDAN
02.12.1958
MILLS
ALICE
16.08.2000

To tidy this up a little remove the / from the last 2 WRITE statements which will make all 3
fields appear on 1 line.

ZEIP Z.

SELECT * FROM zemployees. " Basic Select Loop with individual fields
WRITE / zemployess-surname.” being ouput
WRITE =zemployees=-forename.
WRITE zemployees-dob.

ERD SELECT.
BROWN STEPHEN 16.02,1980
JONES AMY 18.11.1969
MICHAELS E& ANDREW 01.01.1977
NICHOLS BRENDAN 02.12.1958
HILLS ALICE 16.08.2000

Chaining Statements Together

We have used the WRITE statement quite a lot up to now and you will see it appear on a
regular basis in many standard SAP programs. To save time, the WRITE statements can be

72

YOUR FIRST ABAP PROGRAM

chained together, avoiding the need to duplicate the WRITE statement on every line.

To do this, duplicate the previous SELECT loop block of code. After the first WRITE
statement, add “:” This tells the SAP system that this WRITE statement is going to write
multiple fields (or text literals). After the “zemployees-surname” field change the period
(.) to a comma (,) and remove the second and third WRITE statements. Change the second
period (.) to comma (,) also but leave the last period (.) as is to indicate the end of the
statement. This is how we chain statements together and can also be used for a number
of other statements too.

JEIP Z.
JELECT * FROM zemployees, " Chain Statements
WRITE: / zepployess-surname,
zenployees=£forename,
zepployees-dob.
ERDSELECT.

Execute the code, and the output should appear exactly the same as before.

Copy Your Program

Let’s now switch focus a little and look at creating fields within the program. There are
two types of field to look at here, Variables and Constants.

Firstly, it will be necessary to generate a new program from the ABAP Editor. This can be
done either with the steps from the previous section, or by copying a past program. The
latter option is useful if you plan on reusing much of your previous code. To do this,
launch transaction SE38 again and enter the original program’s name into the ‘Program’
field of the ‘Initial’ screen, and then click the Copy button (CTRL + F5):

73

YOUR FIRST ABAP PROGRAM

ABAP Editor: Initial Screen
&b 1 '55' lf‘ ™ i | ﬁ@ @Debuggng @Wlth Wariant E‘,lvariants

Copy... (Ctd+F3)

s i
Program |Z_EMPLOYEE_L IST 01 = O Creata

Subohijects

#Source code
Wariants
Attributes
Documentation

Text elements

S Display rd Change

A window will appear asking for a name for the new program, in this instance, enter
Z_EMPLOYEE_LIST_2 in the ‘Target Program’ input box, then press the Copy button. The
next screen will ask if any other objects are to be copied. Since none of the objects here
have been created in the first program, leave these blank, and click Copy. The ‘Create
Object Directory Entry’ screen will then reappear and, as before you should assign the
entry to ‘Local object’. The status bar will confirm the success of the copy:

() Active source 7_EMPLOYEE_LIST_01 copied to inactive source Z_FMPLOYEE_LIST_D2

The new program name will then appear in the ‘Program’ text box of the ABAP Editor
Initial screen. Now click the Change button to enter the coding screen.

The copy function will have retained the previous report name in the comment space at
the top of your program and in the initial REPORT statement, so it is important to
remember to update these. Also, delete the LINE-SIZE limit, so that this does not get in the
way of testing the program.

74

YOUR FIRST ABAP PROGRAM

*& Report Z_EMF LD'.'IZI_LITJT_EZ L
* g *
e ——— *
T *
LF- *
A e ——————————————————————— *
REPORT = employee_listc 02

Because there are a number of SELECT and WRITE statements in the program, it is worth
looking at how to use the fast comment facility. This allows code to be, in practical terms,
removed from the program without deleting it, making it into comments, usually by
inserting an asterisk (*) at the beginning of each line. To do this quickly, highlight the lines
to be made into comment and hold down CTRL + <. This will automatically comment the
lines selected. Alternatively, the text can he highlighted and then in the ‘Utilities” menu,
select ‘Block/Buffer’ and then ‘Insert Comment *’. The selected code is nhow converted to

comment:

*SELECT * FRON zemployees. " Basic Select Loop

* WRITE zemployees.

*ENDSELECT.

*ULINE.

L

*SELECT * FROM zemployees. " Basic Jelect Loop with a LINE-BREAK
WRITE / :r_‘Lle}"_'l_':.l

*ENDSELECT.

*ULINE.

*SELECT * FROM zemployees. " Basic Select Loop with a LINE-EREAK

* WRITE zemployees. " aftervthe first row is output.
WRITE /

*ENDSELECT.

Delete most of the code from the program now, retaining one section to continue working
with.

Declaring Variables

A field is a temporary area of memory which can be given a name and referenced within
programs. Fields may be used within a program to hold calculation results, to help control
the logic flow and, because they are temporary areas of storage (usually held in the RAM),
can be accessed very fast, helping to speed up the program’s execution. There are, of
course, many other uses for fields.

75

YOUR FIRST ABAP PROGRAM

The next question to examine is that of variables, and how to declare them in a program.
A variable is a field, the values of which change during the program execution, hence of
course the term variable.

There are some rules to be followed when dealing with variables:

e They must begin with a letter.

e Can be a maximum size of 30 characters,
e Cannotinclude +,: or()inthe name,

e Cannot use a reserved word.

When creating variables, it is useful to ensure the name given is meaningful. Naming
variables things like A1, A2, A3 and so on is only likely to cause confusion when others
come to work with the program. Names like, in the example here, ‘Surname’, ‘Forename’,
‘DOB’ are much better, as from the name it can be ascertained exactly what the field
represents.

Variables are declared using the DATA statement. The first variable to be declared here
will be an integer field. Below the section of code remaining in your program, type the
statement DATA followed by a name for the field - integer01. Then, the data type must be
declared using the word TYPE and for integers this is referred to by the letter i. Terminate
the statement with a period.

WOLLLL LCEHPLUYCCD. aLLsLwW L
T WRITE /
TENDSELECT.

DATA integer0l TYPE 1i.

Try another, this time named packed_decimal01, the data type for which is p. A packed
decimal field is there to help store numbers with decimal places. It is possible to specify
the number of decimal places you want to store. After the ‘p’, type the word decimals and
then the number desired, in this instance, 2 (packed decimal can store up to 14 decimal
places). Type all of this, then save the program:

DATA integerOl TYFE 1.
DATA packed decimal0l TYFE p DECIMALS 2.

76

YOUR FIRST ABAP PROGRAM

These data types used are called elementary. These types of variables have a fixed length
in ABAP, so it is not necessary to declare how long the variables need to be.

There is another way of declaring variables, via the LIKE addition to the DATA statement.
Declare another variable, this time with the name packed_decimal02 but, rather than
using the TYPE addition to define the field type, use the word LIKE, followed by the
previous variable’s name “packed_decimal01”. This way, you can ensure subsequent
variables take on exactly the same properties as a previously created one. Copy and paste
this several times to create packed_decimal03 and 04.

If you are creating a large number of variables of the same data type, by using the LIKE
addition, a lot of time can be saved. If, for example, the DECIMALS part were to need to
change to 3, it would then only be necessary to change the number of decimals on the
original variable, not all of them individually:

DATA integer0l TYPE 1.
DATA packed decimalOl TYFE p DECIMALS 3.

DATA packed decimal02 LIFE packed decimalOl.
DATA packed_decimal03 LIEKE packed_decimal0Ol.
DATA packed decimal04 LIFE packed decimal(l.

Additionally, the LIKE addition does not only have to refer to variables, or fields, within the
program. It can also refer to fields that exist in tables within the SAP system. In the table
we created there was a field named ‘Surname’. Create a new variable called
new_surname using the DATA statement. When defining the data type use the LIKE
addition followed by zemployees-surname. Defining fields this way saves you from having
to remember the exact data type form every field you have to create in the SAP system.

H DATE new_surname LIFKE zemployess-surhane.

Check this for syntax errors to make sure everything is correct. If there are no errors
remove the new_surname, packed _decimal02, 03 and 04 fields as they are no longer
needed.

With another addition which can be made to the DATA statement, one can declare initial
values for the variables defined in the program. For the “integer01” variable, after “TYPE
i”, add the following addition: VALUE 22. This will automatically assign a value of 22 to

77

YOUR FIRST ABAP PROGRAM

“integer01” when the program starts.

For packed decimal fields the process is slightly different. The VALUE here must be
specified within single quotation marks, ‘5.5’ as without these, the ABAP statement would
be terminated by the period in the decimal. Note that one is not just limited to positive
numbers. If you want to declare a value of a negative number, this is entirely possible:

DATA integer0l TYPE i VALUE Z2:Z.
DATA packed decimalOl TYPE p DECIMALS 1 walue '-5.5",

Constants

A constant is a variable whose associated value cannot be altered by the program during
its execution, hence the name. Constants are declared with the CONSTANTS statement
(where the DATA statement appeared for variables). When writing code then, the
constant can only ever be referred to; its value can never change. If you do try to change a
Constant’s value within the program, this will usually result in a runtime error.

The syntax for declaring constants is very similar to that of declaring variables, though
there are a few differences. You start with the statement CONSTANTS. Use the name
myconstant01 for this example. Give it a type p as before with 1 decimal place and a value
of ‘6.6’. Copy and paste and try another with the name myconstant02, this time a
standard integer (type ‘i’) with a value of 6:

constants myconstantll type p decimals 1 wvalus '6.6".

constants nyconstant0Z type i wvalue 6.

(A note: one cannot define constants for data types XSTRINGS, references, internal tables
or structures containing internal tables.)

78

ARITHMETIC

Chapter 4

Arithmetic — Addition

Now that the ability to create variables has been established, these can be used for
calculations within a program. This chapter will begin by looking at some of the simple
arithmetical calculations within ABAP.

Our program will be tidied up by removing the two constants which were just created. If a
program needs to add two numbers together and each number is stored as its own unique
variable, the product of the two numbers can be stored in a brand new variable titled
“result”.

Create a new DATA statement, name this “result” and use the LIKE statement to give it the
same properties as packed_decimal01, terminating the line with a period.

To add two numbers together, on a new line, type “result = integer0l +
packed_decimal01.” On a new line enter, “WRITE result.” Activate and test the program,
and the result will appear in the output screen:

DATA integer0l TYPFE i VALUE 22Z.
DATA packed decimalQl TYFE p DECIMALS 1 VALUE '=5.5",

DATA result LIKE packed decimal0Ol,

result = integerll + packed_decimalOl.

write resulc.
My Employee List Report

; 3

My Employee List Report

16.5

79

ARITHMETIC

Things to remember: For any arithmetical operation, the calculation itself must appear to
the right of the =, and the variable to hold the result to the left. This ensures that only the
result variable will be updated in the execution. If the variable titled “result” had been
assigned a value prior to the calculation, this would be overwritten with the new value.
Spaces must always be inserted on either side of the = and + signs. This applies to all
arithmetical operators, including parentheses (), which will start to be used as the
calculations become more complicated. Note that one space is the minimum, and multiple
spaces can be used, which may help in lining code up to make it more readable, and
indeed where calculations may be defined over many lines of code.

It is not just the products of variables which can be calculated in calculations, but also
individual literal values, or a mixture of the two, as shown here:

" result integer0l + Z.

Arithmetic — Subtraction

To subtract numbers, the same method is used, replacing the + with a -. Copy and paste
the previous calculation and make this change. Also, to make this simpler to understand,
change the value of packed_decimal01 from -5.5 to 5.5. One can see by doing this the way
that changing the initial variable will alter the calculation.

Execute the code:

DATA integerll TYPE 1 VALUE ZZ.
DATA packed decimal0)l TYPE p DECIMALS 1 VALUE '5.5'.
DATA result LIKE packed decimalOl,

result = integerll + packed decimalOl.
write / result.

result = integer0l - packed decimal(l.
write J resulc.

[= =

My Employee List Report

21.5
16.5

80

ARITHMETIC

Arithmetic — Division
To divide numbers, the same method is followed, but the arithmetical operator this time
will bea/

result = integerll / packed_decimaldl.
write f resulrc.

R
Arithmetic — Multiplication

To multiply, the operatoris a *

result = integer0l * packed decimal0l.
write J result.

Additionally to these methods, the statements ADD, SUBTRACT, DIVIDE and MULTIPLY
can be used. The syntax for these is slightly different. Beneath the first calculation (where
integer01 and packed_decimal0l where added), write a new line of code
“ADD 8 to result.” (Ignore the comment line in the image):

result = integer0]l + packed decimalDl.
write J result.
*ADD, SUBTRACT, DIVIDE, MULTIPLY

ADD 8 to result.
write / result.

-
My Employes List Report

27.5
35.5

While this is a legitimate method for calculations, it must be added that this is very rarely
used, as the initial method is much simpler.

81

ARITHMETIC

Conversion Rules

In this program, different data types have been used when declaring variables. It is the
responsibility of the programmer to ensure the data types used are compatible with one
another when used for calculations or moving data to and from objects. One should not
attempt calculations with variables and numbers which do not match.

For example, a variable defined as an integer cannot be multiplied by a character, as these
two data types are incompatible. This would cause the system to generate syntax and
runtime errors when the program is executed. While SAP has built in automatic data type
conversions for many of the standard data types within ABAP, there are scenarios where
the inbuilt conversion rules are not appropriate. It is important to become familiar with
the inbuilt conversion rules and know when to manipulate the data prior to using them in
calculations. Here, some examples of conversion rules will be given, so that they can be
used throughout programs created.

Conversion rules are pre-defined logic that determine how the contents of the source field
can be entered into a target field. If one attempts to insert an integer field containing the
value of 1 to a character string, the built-in conversion rules will determine exactly how
this should be done without any syntax or runtime errors.

For example, create a DATA statement with the name “num1” of TYPE p (packed decimal)
with DECIMALS 2 and a VALUE of ‘3.33’. Then create another variable with the name
“resultl” of type i (integer). Attempt the calculation “resultl = num1”. The conversion
rule here would round the number to the closest integer, in this case 3.

data numl type p decimals 2 wvalus '3.33°.
data resultl type 1.
resultl = ruml.

uline,
write / resulcl.

As you work with different data types, these kinds of conversion rules will often be applied
automatically, and it is up to you, the programmer, to understand these conversion rules

82

ARITHMETIC

and the data types used within the program to ensure no runtime errors occur.

Division Variations

Now, a slight step back will be taken to discuss the division operator further. In ABAP,
there are three ways in which numbers can be divided:

e The standard result with decimal places
e The remainder result
e Theinteger result.

The standard form of division.

Create 2 variables, “numa” and “numb”, with values of 5.45 and 1.48 respectively, then
create the variable “result2” (also with 2 decimal places). Then insert the calculation
“result2 = numa / numb.” followed by a WRITE statement for result2. Execute the
program.

data numa type p decimals 2 walue "5.45'.
data humb type p decimals 2 wvalue "1.48'.
data resultZ type p decimals Z.

resultl] = numa / numb.

uline,
write / resultd. I

3. 08

The integer form of division.

Copy the initial calculation; change the initial variables to “numc” and “numd” and the
resulting variable to “result3”. For integer division, rather than using the standard /, use
the operator DIV. This will give the result of the calculation’s integer value, without the
decimal places.

83

ARITHMETIC

*Integqer Division
data nume type p decimals Z wvalue "5.45°'.
data numd type p decinals 2 walue "1.48',

data resultd type p decimals 2.

resultd = numc DIV numd,

uline.
write / result3.|

3.00

The remainder form of division.
Follow the steps from the integer form, this time with “nume”, “numf” and “result4”. For
this type of division, the arithmetical operator should be MOD. This, when executed, will

show the remainder value.

"Remainder Diviszion

data nume type p decimals 2 value '"5.45'.
data numf type p decimals 2 value "1.48°'.
data resultd type p decimals 2. I

resultd = nume MOD numf.

uline.
write / reaulcd.

1.01

84

CHARACTER STRINGS

Chapter 5 — Character Strings

Declaring C and N Fields

This chapter will discuss character strings. When creating programs, fields defined as char-
acter strings are almost always used. In SAP, there are two elementary data types used for
character strings. These are data type C, and data type N.

Data type C.
Data type C variables are used for holding alphanumeric characters, with a minimum of 1
character and a maximum of 65,535 characters. By default, these are aligned to the left.

Begin this chapter by creating a new program. From the ABAP Editor’s initial screen, cre-
ate a new program, named “Z_Character_Strings”. Title this “Character Strings Exam-
ples”, set the Type to ‘Executable program’, the Status to ‘Test program’, the Application
to ‘Basis’, and Save.

Create a new DATA field, name this “mychar” and, without any spaces following this, give
a number for the length of the field in parentheses. Then, include a space and define the
TYPEasc

FEPORT Z _CHARACTER STRINGS

data mychar(l0) type c.

This is the long form of declaring a type c field. Because this field is a generic data type,
the system has default values which can be used so as to avoid typing out the full length of
the declaration. If you create a new field, named “mychar2” and wish the field to be 1
character in size, the default field size is set to 1 character by default, so the size in brack-
ets following the name is unnecessary. Also, because this character field is the default
type used by the system, one can even avoid defining this. In the case of mychar2, the
variable can be defined with only the field name. The code in the image below performs
exactly the same as if it was typed “data mychar2(1) type c”:

H data mychari.

85

CHARACTER STRINGS

In the previous chapter, the table “zemployees” included various fields of type c, such as
“zsurname”. If one uses the TABLES statement followed by zemployees, then by double-
clicking the table name to use forward navigation and view the table, one can see that the
“surname” field is of data type CHAR, with length 40. This declaration can be replicated
within the ABAP program:

SURNAME [| ZSURNAME CHAR 40 0Surname Data Element

Return to the program, and in place of mychar2, create a new field named “zemploy-
eesl”, with a length of 40 and type c. This will have exactly the same effect as the previous
declaration. Referring back to previous chapter, another way of doing this would be to use
the LIKE statement to declare zemployees (or this time zemployees2) as having the same
properties as the “surname” field in the table:

data zemployeesl(40) Type C.

data zemployees2 like ZEMPLOYEES-surname.

Data type N.

The other common generic character string data type is N. These are by default right-
aligned. If one looks at the initial table again, using forward navigation, the field named
“employee”, which refers to employee numbers, is of the data type NUMC, with a length
of 8. NUMC, or the number data type, works similarly to the character data type, except
with the inbuilt rule to only allow the inclusion of numeric characters. This data type, then,
is ideal when the field is only to be used for numbers with no intention of carrying out cal-

culations.
r 1
EMPLOYEE ZEENUH I_IlLl'l*IC| 4 8 0 Employes Data Element

To declare this field in ABAP, create a new DATA field named “znumberl”, TYPE n. Again,
alternatively this can be done by using the LIKE statement to refer back to the original
field in the table.

|| data znumber]l type n.

86

CHARACTER STRINGS

String Manipulation

Like many other programming languages, ABAP provides the functionality to interrogate
and manipulate the data held in character strings. This section will look at some of the
popular statements which ABAP provides for carrying out these functions:

e Concatenating String Fields

e Condensing Character Strings

¢ Finding the Length of a String

e Searching for Specific Characters
e The SHIFT statement

e Splitting Character Strings

e SubFields

Concatenate

The concatenate statement allows two character strings to be joined so as to form a third
string. First, type the statement CONCATENATE into the program, and follow this by speci-
fying the fields, here “f1”, “f2” and so on. Then select the destination which the output
string should go to, here “d1”. If one adds a subsequent term, [separated by sep] (“sep”
here is an example name for the separator field), this will allow a specified value to be in-
serted between each field in the destination field:

concatenate f£1 £2 into dl [separated by sep].|

Note: If the destination field is shorter than the overall length of the input fields, the char-
acter string will be truncated to the length of the destination field, so ensure when using
the CONCATENATE statement, the string data type is being used, as these can hold over
65,000 characters.

As an example, observe the code in the image below.

87

CHARACTER STRINGS

Lag
DATA: title{ls) TYPE c VALUE ‘Mr',

surname (40) TYPE c VALUE ‘*3mith',
forename (40 TYPE ¢ VALUE ‘Joe',
sep,

destination (200) TYPE c.

CONCATENATE title surname Lorename INTO destination.
WRITE destination.
uline.

The first 3 fields should be familiar by now. The fourth is the separator field, here again
called “sep” (the size of sep has not been defined here, and so it will take on the default
which the system uses - 1 character). The last field is titled “destination”, 200 characters
long and of data type c.

Below this section is the CONCATENATE statement, followed by the fields to combine to-
gether into the destination field. The WRITE statement is then used to display the result.
Executing this code will output the following:

Hrimithdos

Note that the text has been aligned to the left, as it is using data type c. Also, the code did
not include the SEPARATED BY addition, and so the words have been concatenated with-
out spaces. This can be added, and spaces will appear in the output:

CONCATENATE title surnsme forename INTO destination 3EPAFATED EY sep.
WRITE destination. I
uline.|

Mr Smith Joe

Condense

Next, the CONDENSE statement. Often an ABAP program will have to deal with large text
fields, with unwanted spaces. The CONDENSE statement is used to remove these blank
characters.

Now, observe the code below:

88

CHARACTER STRINGS

DATA: title(l5) TYPE c VALUE "Mr',
surname (40 TYPE ¢ VALUE ‘'3mith',
forenamne (40) TYPE ¢ VALUE ‘'Joe',
Sep,
destination(200) TYPE c,
ﬂ spaced nawe (20} type o WALUE ‘Mr Joe Smith'.
e |, [

This should, of course, be mostly familiar from the last section, with the addition of the
new, 20-character “spaced_name” field, with large spaces between the individual words.
Below we have an example of using the CONDENSE statement using our new variable:

CONDENSE spaced name.
WRITE spaced name,
ulinEJ

The CONDENSE statement will remove the blank spaces between words in the variable,
leaving only 1 character’s space:

Hr Joe Smith

NO-GAPS
An optional addition to the CONDENSE statement is NO-GAPS, which as you may guess,
removes all spaces from our variable.

bﬂHDEHSE spaced_name NO-GAF3.
WRITE spaced name.
TLINE.

MrJoeSnith

Find the Length of a String

To find the length of a string, a function rather than a statement is used. Added beneath
the previous data fields here, is a new one titled “len”, with a TYPE i, so as to just hold the
integer value of the string length.

spaced name (20) TYPE c WALUE ‘“Mr Joe mith',
hen TYPE 1.

H U LI Ll LML | SR) LirL Ly

89

CHARACTER STRINGS

The code to find the length of the ‘surname’ field and display it in the ‘len’ field appears
like this, with “strlen” defining the function:

len = strlen(surname).
WRITE: 'The length of the JURNAME field is', len.
ULINE.

The output, then, will appear like this:

The length of the SURNAME field is 5

Replace

Below | have created the “surname2” field and is 40 characters in length. Note that no
TYPE has been defined, so the system will use the default type, c:

len TYPE i,
surnamed (40 .

Some text is then moved into the field after which the REPLACE statement is used to re-
place the comma with a period:

surnames = 'Mr, Joe Smith'.

hEPLhE‘E ',' WITH '.' INTO surnamez.
WRITE: surnamez.
ULINE.

Hr. Joe Smith

One thing to note here is that the REPLACE statement will only replace the first occurrence
in the string. So if, for example, the surname2 field read “Mr, Joe, Smith”, only the first
comma would be changed. All occurrences of comma’s could be replaced by making use
of a while loop, which will be discussed later on.

Search

Next, a look will be taken at searching for specific character strings within fields. Unsur-
prisingly, the statement SEARCH is used for this.

90

CHARACTER STRINGS

All that is needed is to enter SEARCH followed by the field which is to be searched, in this
instance the surname?2 field. Then the string which is to be searched for, for example,

’

‘Joe’:

surnane? = 'Mr Joe 3mith'.
SEARCH surnamez for "Joe!'.

Note that here no variable has been declared to hold the result. In the case of the SEARCH
statement, two system variables are used. The first is “sy-subrc”, which identifies whether
the search was successful or not, and the second is “sy-fdpos”, which, if the search is suc-
cessful, is set to the position of the character string searched for in surname2. Below, a
small report is created to show the values of the system variables.

surnames = "Mr Joe Smith'.

WRITE: / 'Searching: "Mr Joe Zmith™'.
SKIP.

SEARCH Example 1

The first SEARCH statement, below, indicates that the surname?2 field is being searched,
for the character string ‘Joe ‘. The Search statement will ignore the blank spaces. The
output will show the string being searched for, followed by the system variables and the
value results. In this case, the search should be successful.

SEARCH surnamez FOR 'Jos= "

WRITE: / 'Searching for "Joe ",

WRITE: / 'sy-subrc: ', sy-subrc, / 'sy-fdpos: ', sy-fdpos.
ULINE.

SEARCH Example 2

The next example is very similar, but the full stops either side of ‘Joe .’ mean that the
blank spaces this time will not be ignored and the system will search for the full string,
including the blanks. Here, the search will be unsuccessful, as the word ‘Joe’ in the
Surname?2 field is not followed by four blank spaces.

SEARCH surnamez FOR '.Joe ot

WMRITE: / 'Zearching for ".Joe L

TRITE: / 'sy-subrc: ', ay-subrec, / 'sy-fdpos: ', sy-fdpos.
ULINE.

91

CHARACTER STRINGS

SEARCH Example 3
This third search uses a wild card character ‘*” and will search for any words ending in
‘ith’. This, again, should be successful.

SEARCH surnamez FOR "*ith'.

WRITE: / 'Searching for "*ith"'.

WRITE: / 'sy-subrec: ', sy-subrc, / 'sy-fdpos: ', sy-fdpos.
TLINE.

SEARCH Example 4

The last example also uses the wild card facility, this time to search for words beginning
with ‘Smi’, which again should be successful. Compare the places in the code where the *
appears in this and the previous example.

SEARCH surnamez FOR "Swmi*'.

WRITE: / 'Bearching for "Smi*"",

WRITE: / 'sy-subrc: ', sy-subrc, / 'sy-fdpos: ', sy-fdpos.
ULINE.

Run a test on these searches, and output returns as follows:

Searching: "Mr Joe Smich”
Jearching for "Joe "
sy-subrc: 0
sy-fdpos: 3

Searching for ".Joe
sy-subrc: B
sy~-fdpos: 0

Searching for "*ith"

sy-subrc: 0
sy-fdpos: 7
Searching for "Smi*®"
sy-subrc: 0
sy-fdpos: 7

When the sy-subrc = 0 this refers to a successful search. When sy-subrc = 4 in the second
example this indicates that the search was unsuccessful.

92

CHARACTER STRINGS

In the first search, the sy-fdpos value of 3 refers to the third character in the surname2
field, the offset, and the search term appears one character after this. The failure of the
second search means that a O is displayed in the sy-fdpos field. The value of 7 in the sy-
fdpos fields for the final two searches both mean that the word ‘Smith’ was found, corre-
sponding to the search terms, and that the searched word appears 1 character after the
offset value.

Shift

The SHIFT statement is a simple statement that allows one to move the contents of a
character string left or right, character by character. In this example, a field’s contents will
be moved to the left, deleting leading zeros. Declare a new DATA variable as follows:
“empl_num”, 10 characters long, and set the content of the field to ‘0000654321’, filling
all 10 characters of the field:

Lo s | g Papem o wmau s
sep,
destination (200) TYPE c,
spaced name (20) TYPE ¢ VALUE 'Mr Jog Smith',
len TYPE i,
surnamed (40) ,
empl num(10].

[—

enpl num = ‘0000654321,

Using the SHIFT statement, then, the 4 zeros which begin this character string will be re-
moved, and the rest moved across to the left. Type the statement SHIFT, followed by the
field name. Define that it is to be shifted to the left, deleting leading zeros (don’t forget
the help screen can be used to view similar additions which can be added to this state-
ment). Then include a WRITE statement so that the result of the SHIFT statement can be
output. To the right of the number here, there will be four spaces, which have replaced

the leading zeros:

SHIFT empl num LEFT DELETING LEADING "0°'.
WERITE enpl num.

634321

93

CHARACTER STRINGS

If no addition to the SHIFT statement is specified, the system will by default move every-
thing just one character to the left, leaving one space to the right:

SHIFT empl num. |
WRITE empl mum.

Q00654321

The CIRCULAR addition to the SHIFT statement will cause, by default, everything to move
one space to the left again, but this time the character which is displaced at the beginning
of the statement will reappear at the end, rather than leaving a blank space:

SHIFT empl num CIRCULAR.
WEITE empl num.

0006543210

Split
The SPLIT statement is used to separate the contents of a field into two or more fields.

Observe the code below:

* SPLIT Statement - Splitting Character Strings
DATA: wystring(30) TYPE c,

al(10) TYPE c,

a2 [10) TYPE c,

a3 (10) TYPE =,

sepz (2] TYPE © VALUE *#%',
nystring = ' l234%F ABCD *%g789'.
*mystring = ' 1234%% ABCD **5789¥+WXTE'
WRITE mystring.

3EIP.
SPLIT wystring AT sep2 INTO al a2 a3.
WRITE / al.

WRITE / a2.
WRITE / a3.

04

CHARACTER STRINGS

The first section contains several DATA statements, “mystring”, “al”, “a2”, “a3” and

“sep2”, along with their lengths and types. “Sep2” here is a separator field, with a value of
(R’

“mystring” is then given a value of * 1234** ABCD **6789’, followed by a comment line
(which the program will ignore), then a WRITE statement, so that this initial value appears
in the output followed by a blank line, using the SKIP statement.

The SPLIT statement appears, followed by the name of the string which is to be split. The
AT addition appears next, telling the program that, where “sep2” appears (remember the
value of this is “**’), the field is to be split. Following this, the INTO then specifies the
fields which the split field is to be written to. The slightly odd positioning of the spaces in
the value of “mystring” will, when the statement is output, make clear the way that the
SPLIT statement populates the fields which the data is put into. Execute the code, and this
is the result:

1234%*% ABCD **6789

1234
ABCD
6759

You can see that the initial field has been split into al, a2 and a3 exactly where the ** ap-
peared, leaving a leading space in the first two fields, but not in the third. Additionally, on
closer inspection there are blank spaces following the numbers in each field up to its de-
fined length, which is 10.

This next example shows the initial value of “mystring” now is made into a comment line,
and the comment line becomes part of the code:

*mystring = ' 1234%% ABCD #+§789',
wystring = ' 1234%F ABCD **RTE9*FWAYZ".
WRITE mystring. I
SEIP.

SPLIT mystring AT sep2 INTO al a2 a3.

WRITE / al.
WRITE / aZ.
WRITE 7 a3.

95

CHARACTER STRINGS

‘mystring’ now contains the original contents plus a further set of characters. While the
contents are still to be split into 3 fields, the data suggests it should be split into 4. In this
case, with less fields than those defined, the system will include the remainder of the
string in the final field. Note that if this field is not long enough for the remainder, the re-
sult would be truncated.

1234**% ABCD **67HI**WXTE

1234
AECD
BTEOF Y2

SubFields

Within ABAP, you have the option of referring to specific characters within a field. This is
referred to as processing subfields, whereby a specific character’s position within its field
is referenced. Again, observe the code below:

DATA: int_telephone num(l7) TYPE o,
country_code({3) TYPE c,
telephone_num(l4) TYPE c.

int_telephone num = ‘+44- (0)207-123456".
WRITE int telephone muam.
AKIF.

country code = int telephone num(3).
telephone num = int telephone num+4(13).
WRITE /7 country code.

WRITE / telephone_num.

country_code+l (Z) = '01°,

WRITE / country code.

” “

To start with, new DATA variables are declared, “int_telephone_num”, “country_code”
and “telephone_num”, along with lengths and types. Following this, a character string is
assigned to int_telephone_num, a WRITE statement for this string and a blank line.

96

CHARACTER STRINGS

Next, the subfield processing appears. The first line states the country code field is to be
filled with the first 3 characters of the int_telephone_num field, indicated by the number
in brackets.

Then, the field telephone_num is to be filled with 13 characters of the int_telephone_num
field, starting after the 4™ character. The +4 part of the code here refers to where the field
is to begin. Then we have WRITE statements for both of the fields.

This last example indicates that the specific characters of int_telephone_num moved to
the country_code field will be replaced, after the first character, by the literal, 2-character
value ‘01’, showing that a subfield can itself be edited and updated without changing the
initial field. The results should look like this:

+14-(0) 207-123456
+44

(0)207-123456
+01

Subfields are regularly used in SAP to save time on creating unnecessary variables in
memory. It is just as easy to use the subfield syntax.

97

DEBUGGING PROGRAMS

Chapter 6 — Debugging Programs

This chapter will introduce the ABAP debugger, and will introduce some of the tools which
can be used to ensure that the programs you create function as intended. It will also show
ways to highlight logic bugs in programs that cannot be identified by the syntax checker.

The first step here is to load a program which has been used previously, and which ac-
cesses the database table which has been created regarding employee records. If you
have been following along with instructions, load program “Z_Employee_List_01” into the
ABAP Editor.

The program contains a number of SELECT loops, which in turn write the contents of the
table being read to the output screen in several ways, separated by ULINE statements:

REPORT =z employee list 01 LINE-SIZE 132

TABLES zemployees.

AERE TR TR TR R ERN IR LTI NERN RN ENIRNRIRNIN RN TR
SELECT * FROM zemployees. " Basic Select Loop

WRITE zemployees.
ERDSELECT.

ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LINE-BREAK
WRITE / zemployees.
ERDSELECT,

ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LINE-BREAK
WRITE zemployees. " aftervthe first row is output.
WRITE /.

ENDSELECT.

ULIKE.

SKIP 2.

SELECT * FROM zemployees. " Basic Select Loop with a SKIP statement
WRITE / zemployees.

ERDSELECT.

Having examined the code, return to the front screen of the ABAP editor.

98

DEBUGGING PROGRAMS

Firstly, on this screen you will notice there is a ‘Debugging’ button in the toolbar (also ac-
cessible with SHIFT+F5):

ABAP Editor: Initial Screen
ga 1 ©® S B T 06D Ooebugong Owith varant [@variants

Uy 3 -
Program Nz EMPLOYEE LIST 01 2 0 cete |

Click this with the program name in the program input text box to start a new debugging
session. When this opens, a blue arrow should be visible, pointing at the first line of code
in the program:

ABAP Debugger

G (3 ¢F 4 [Iwatchpont

Fields I Table || Breakpoints [Watchpoints “ Calls . Overview || Settings]
Main Program Z_EMPLOYEE LIST 01 4] p b=
Source code of Z_EMPLOYEE_LIST 01 1.:_] a ?_]@]

EVENT START-OF-SELECTION
. t& ___ *
?& *
0 *
ettt *

= REFPRT z_employee list 01 LINE-SIZE 132

An alternative way of starting a debugging session is to display the code itself from the
initial screen, select a line of code and set a breakpoint. This is done by, having selected a

@

line, clicking the Stop icon:

This sets a breakpoint for that line. When the program is then executed the execution will
pause highlighting the line that has the Breakpoint set entering the debugging session.
Usually, this is the easiest method to use, as one will often have a good idea of where the

99

DEBUGGING PROGRAMS

issues in a program are allowing you to focus on specific areas of code straight away,
rather than starting from the very beginning of a program as the previous method does:

SELECT * FROM zemployees. " Basic Select Loop with a LINE-BREAK
WRITE / zeuployess,
ENDSELECT.
E? @ SELECT * FROM zemplovyees, " Basic 3elect Loop with a LINE-EREAE
WRITE / zemplovyees.
ENDSELECT.

There are two types of breakpoint which can be set in a program. Static (which will be ex-
amined later) and dynamic. A dynamic breakpoint is the kind which was used above, and
these are only valid for the current session. If one leaves the SAP GUI and returns later,
any dynamic breakpoints set will no longer exist. A breakpoint can also be set by double-
clicking any statement within the debugging session itself. To then remove these in the
session, simple double-click the stop icon appearing adjacent to them.

You will notice that a number of buttons appear at the top of the debugging screen:

ABAP Debugger
Cz 5 % 7 [l Dh‘v’atchpoir.[h

Fields \ Table | Breakpoints | Watchpoints | Calls Overview H Settings]

These buttons allow for different modes of the ABAP debugger to be entered. The default
mode here is Fields.

The ‘Single step’ button, the first on the left in the row above the modes, also accessible
with F5, allows one to go through the code within the debugger line-by-line, or indeed as
its name would suggest, single steps. As one presses the button, the blue arrow on the left
of the code will move down one line at a time.

The next button along is the ‘Execute’ button, with a shortcut of F6. This allows for inde-
pendent sections of code to be executed, such as function modules or forms. This can be
very useful. If a program includes existing sections of code already created in an SAP sys-

100

DEBUGGING PROGRAMS

tem which are known to be correct, there is no need to debug them. These can then be
executed independently, while other parts are debugged to find specific problems.

The next button is the ‘Return’ function (F7). This can be very useful if one forgets to use
the ‘Execute’ function. If one goes through the lines of a program step-by-step, using the
F5 key to step into a working function module, which may contain many lines of code, it is
likely the case that it does not need to be debugged (because you know this function
module already exists). Pressing the F5 key endlessly to go through the lines of code here
is unnecessary when one wants to step out of this function module and access the parts
which require debugging. Using the ‘Return’ button, all of the code within a specific func-
tion can be executed, returning to the line of code which calls that function.

The fourth in the row is the ‘Continue’ option (F8). This allows one to continue the pro-
gram without going through step-by-step, line-by-line. When this button is pressed, the
program executes and the output screen is shown. This button can also be used to just
access a selected line of code, where the cursor is positioned. If one positions the cursor in
a line of code and presses continue, the blue arrow in the debugger will appear directly
next to that line. If you then press continue again, the program will be executed.

The next option in this row of the toolbar is ‘Display list’, accessible with CTRL+F12. This
takes you to the output screen as it currently stands within the debug session. Here, the
code has been executed to output the result of the first SELECT statement in the program:

ABAP Debugger

Gy L5 R ¥ h
My Employee List Report
0001000000 LBROWH STETHEN MR 19800216
00010000002 T0NES AMY MR35 19691118
00010000003MICHAELS ANDREW 133 19770101
00010000004NICHOLS BRENDAN MR 19581202
00010000005MILLS ALICE MRS 20000816

This function allows you to see the results of the reports whilst the program is in mid-flow.

The last option here is ‘Create watchpoint’ (SHIFT + F8). Watchpoints will be returned to
soon.

101

DEBUGGING PROGRAMS

Fields mode

The ‘Fields’ mode of the ABAP debugger allows the contents of fields to be checked and
modified as the program is debugged. This can be accessed either by double-clicking the
field name within the code itself, or entering it into the ‘Field names’ section below the
code:

SKIP 2.
SELECT * FRON zemployees, " Chain 3tatemnsnts
WRITE: / zemployees-surname,
zemployees-forenane,
zenployees-dob.

ENDSELECT.

|E Field names 1-4|v |E | Field contents
Zemployess-surname MICHAELS &M{f’? |
:_zenpluyees—turen&mel I _:AI-IDREDI '&M;ﬁ’ |

3Y-SUBRC |0 ST-TABTX |1 SY-DBCNT |3

Note that, since here a table is involved, in the field name section the name of the table
must first be specified, followed by a -, then the name of the field. The field contents will
be filled in automatically. As you step through code line-by-line in the SELECT loop, the
text held in each field will change as each loop completes and moves onto the next record
in the table. This section allows for 8 fields to be monitored at any time. Fields 5 - 8 can be
made visible via the navigation buttons in the middle (to the right of the numbers 1 — 4).

Often when debugging a program, you may want to manually change the contents of
fields. This can be achieved by replacing the text in the field contents area, then clicking
the ‘Change field contents’ icon, marked with a pencil. Doing this can save a lot of time,
avoiding having to exit the debugging session multiple times to enter new values into
fields elsewhere:

102

DEBUGGING PROGRAMS

. PR -
zemp lovess-surnane JOHNS0
uploy I H &2
zemployees-Lorenans ALICE Q hoe fid comtent

_Nga 1 ConiEnts

System Variables

At the bottom of the debugger screen, are 3 fields, named ‘SY-SUBRC’, ‘SY-TABIX’ and ‘SY-
DBCNT’:

SY-SUBRC |0 SY-TABTX |1 SY-DECNT |5

Note that the value boxes here are greyed-out, meaning that they cannot be changed
manually. These are system fields, belonging to a table called SYST. This system table in-
cludes many system fields which are filled in at runtime. These system fields are filled in
automatically while the program is executed. Most statements within ABAP will cause
these system fields to be filled with 0 when executed successfully. It is important to re-
member that these fields are completely statement-dependent, meaning that they will
contain different values depending on which statement is executed. These system codes
and variables will be looked at in greater depth later.

Table Mode

The second mode along from the Fields button on the left of the screen is Table mode.
Click this button and the code remains, but the bottom section changes to include an ‘In-
ternal table’ entry, and a single row:

SELECT * FRON zemployees. " Basic Select Loop with a LINE-EREAK
[A
Internal table] || Type Format [E [>=T|
|é’ iCharige ||E- Insert 0 Append u | Delete |

Internal tables have not yet been covered in depth, but, put simply; an internal table is a
table of records which is stored in memory while the program is running. Table mode al-
lows one to interrogate the records and fields of each record in an internal table. As with

103

DEBUGGING PROGRAMS

Fields mode, the internal table can either be double-clicked in the code, or manually en-
tered into the ‘Internal table’ box.

If one does this for “zemployees”, then, a new window appears, displaying the table
name, its individual fields and their contents:

Structured fisld

Langth (in bytes) 114

M. Component. name T. Ln... Contents E
1 HANDT C 3 000 —
2 EMPLOYEE il g 10000005 o
3 SURMNANE C 40 JOHNZ0N
- FORENAME i 40 ALICE
5 [TITLE o 15 MRS
] DOE I D g 200008le

Things do look slightly different to normal here, as a table structure is being shown, rather
than an actual internal table. This results in the debugger showing the table structure as
above, listing the individual fields numbered 1 — 6 and their contents. When viewing an
internal table in this mode, one will see a number of records for each internal table with
their contents. These records can then be double-clicked to move to the above layout,
showing the individual fields for each record. This will be returned to later.

In this screen, the code remains, but the area in which it is displayed is very small. One can
continue to interrogate the code line-by-line as before still, but this may prove difficult. It
is usually simpler to check Table mode for the information required, and then click back to
Fields mode to continue the debug session.

104

DEBUGGING PROGRAMS

Breakpoints

Click the Breakpoint mode button in the ABAP debugger screen. This allows you to see a
list of the individual breakpoints which have been set. Double-clicking any breakpoint in
the Breakpoints table will remove that breakpoint from the list:

EVENT START-OF-SELECTION
SELECT * FROM zemployees. " Basic Select Loop with a LINE-EREAK

e

WRITE zemployees. aftervthe first row is output.

= WRITE /.
Breakpoints
N. | Breakpnt type in (absolute path) CO.E
@ 1 Point in program Z_EMPLOYEE LIST 01(20) -
3 I &
3
4
5
6
7
8
Q
10
11
13 v
i1) 4«)

This breakpoint table can be very useful, particularly when one is in a large program with
many breakpoints set. It allows one to review the breakpoint, and allows for the removal
of breakpoints which are no longer desired.

It is important to remember that breakpoints (and indeed Watchpoints) are only valid for
the length of the current debug session. When you exit your session, the breakpoints will
be deleted. However, an option does exist allowing you to save breakpoints (and, again,
Watchpoints) before closing a debug session, keeping them active for the next time the
program is to be debugged, saving the hassle of recreating them. This is done by entering

105

DEBUGGING PROGRAMS

the ‘Breakpoint’ menu in the top toolbar and choosing ‘Save’. All of the breakpoints saved

will then remain until they are manually removed, or until the end of your SAP session.

| Breakpoint | Settings Development

Create/delete
Activate/deactivate
Delete
Deactivate all
Activate al

S

Breakpont at

Create watchpoint

Shift+F4

Shift+F2

CtrsS

Shift+Fg

If one is in the ABAP editor, it is possible to see an overview of all the dynamic break-
points set in the program by accessing the following menu option: Utilities = Breakpoints
- Display:

= LIPS At

| Utlities | Enwironment Systern Help

Settings

Display object list
Worklist

Display navigation window
Update Mavigation Index
Help on...

Breakpoints

Block/buffer

Mare utilities
Where-used list

Wersions

Ctrl+Shift+FS

Ctri+Shift+F4

Ctri+Fe

Ctrl+Shift+F3

U8 BE &R

bty Printer

Qiﬁmr
Setftelste Ctri+Shift+F12
Delate

106

DEBUGGING PROGRAMS

[Breakpoint Table X
|, Z_EMPLOYEE_LIST 01 Z_EMPLOYEE_LIST Ol 000020 SELECT * FROM zemployees. " Basic Se
Z_EMPLOYEE_LIST 01 Z_EMPLOYEE_LIST 01 000027 WRITE zemployees. " aftervthe first r
Z_EMPLOYEE_LIST Ol Z_EMPLOYEE_LIST Ol 000026 SELECT * FROM zemployees. * Basic Select Lo

) i

|8 Delete selected objects || Sel. displayed objs |/Sy Al Breakpoints of Program S All Breakpoints of Session |[= Navigate |

J

The options at the bottom of this breakpoint table allow one to delete selected break-
points without entering the debugger and breakpoints can be navigated to in the program
itself (within the ABAP editor) by double clicking them in this table.

Static Breakpoints

Static breakpoints were briefly alluded to earlier. These refer to a line of code written into
a program which forces the program to enter debug mode at the specific line chosen. To
do this, the statement BREAK-POINT is used. When the code is executed, the debug ses-
sion will start with the usual blue arrow cursor pointing at the location of the static break-
point.

i b AV g it B A S W
WRITE / zemployees.
ERDSELECT.

BREAK-FPOINT.

ULINE.

SELECT * FROM zemployess, " Basic Select Loop with a [

107

DEBUGGING PROGRAMS

ENDSELECT.
= BREAK-FOINT.
ULINE.

SELECT * FROM zemployees. * Bazic 3Jelect Loop with a LI

Once this statement is embedded in a program, it is active for all users. This is largely un-
desirable, as others running the program, who do not want to debug the code, would be
faced with the breakpoint set by an individual user. Be careful not to leave this statement
line in programs which will be transported to other systems.

Watchpoints

Click the Watchpoints button in the ABAP debugger. The program code will be visible
above the Watchpoints table in the lower half of the screen. Breakpoints have previously
been discussed, and can be very useful, but are not always the ideal tool to use to pause
code execution, interrogate the contents of individual fields and internal tables and ana-
lyse the program’s logic.

Imagine the program was processing a table containing 1000 records, and one wanted to
debug the logic only when a certain condition occurs. This condition is dependent upon
the data held in the records being processed. By using breakpoints, one would have to
debug each individual record, obviously taking a huge amount of time. Here, Watchpoints
become useful. Using these, one can tell the program to stop in the same manner that it
would for a breakpoint, but instead of stopping at a specific line of code, it would stop
based on the value in a field. In this example then, if this value occurred only in the 200™
line of the table, a watchpoint would allow the first 199 records to be skipped over.

A watchpoint is created with the ‘Create watchpoint’ button, seen above the list of modes
in the Watchpoint mode screen, or with SHIFT + F8.

Once this is done, a dialogue box will appear, with the program name filled in automati-
cally. Here you need to enter the name of the field to be watched. In the
Z EMPLOYEE_LIST 01 example here, we will enter the surname field. The format is TA-
BLE NAME-FIELD NAME. Next, the relational operator is to be set. In this example, a sur-

108

DEBUGGING PROGRAMS

name with the value “Mills” will be sought, so the operator here is an =. This can be se-
lected from a drop-down menu, where one can also view other potential relational opera-
tors. The bottom field, then, should be filled in with the value to be watched for.

Note that one does not have to use a specific value in the bottom field, but can get a
watchpoint to compare a field against another field within the program. To do this the
‘Comparison field” box should be checked, and the field name typed into the box rather
than a specific value.

Click the green tick to continue and create the watchpoint, and the entry will have been
added to the list at the bottom of the screen:

17 [) watchpaint

I Create watchpoint (Shift+F8) - —
jl Tahl= " B e v i T

[Er CreatefChanoe Watchpoint

ILocal watchpoint {only in specified program)
Program Z_EMPLOYEE_LIST 01

o

| Field name enuployess-surnamne

| Relational Operator =

Comparizon fiskd (Comparison value if not selected)
1 [F

| cornp. fieldfvalue MILLS I

109

DEBUGGING PROGRAMS

Watchpaints

M. L.. Program Field name Q. |F.. | Comp. §i... E

1 [| Z EMPLOYEE LIST 0l zemployees-surname = | HILLS & l

2 |

3 I

4 | -

5 m -
4 4

Logical operator between watchpaints: (# 0R () AND
Current fisld contents of the |ast watchpaint reached:

Observe the boxes below the Watchpoints list here. They are currently empty, but when
the program is executed, it will pause once a value of ‘Mills’ is reached in the ‘surname’
field and this will be included in the box.

The output before the program is executed looks like this:

My Employee List Report 1
00010000001BROWH STEPHEN MR 19800216
00010000002J0NES AMY MRS 19691118
00010000003MICHAELS ANDREW MR 19770101
00010000004NICHOLS BRENDAN MR 19581202
00010000005SMILLS ALICE MRS 20000816
0001000000 1BROWN STEPHEN HR 19800216
00010000002J0NES AMY MRS 19691118
00010000003MICHAELS ANDREW MR 19770101
00010000004NICHOLS BRENDAN MR 19581202
00010000005HILLB ALICE MRS 20000816

Note that the surname Mills appears in the fifth row down. When the program is executed
with the ‘Mills’” watchpoint set, the first four records will be written to the screen before
pausing at the fifth, when Mills is displayed.

00010000001BROUN STEPHEN HR 198002186
00010000002J0NES AMY MRS 19691118
00010000003MICHAELS ANDREW MR 18770101
00010000004NICHOLS BRENDAN MR 18581202

You will see that the blue arrow cursor has paused at the SELECT loop in the code.

110

DEBUGGING PROGRAMS

'=9 SElLECT * FROM zemployees. " Basic Select Loop with a LINE-EREAK
WRITE zemployees. " aftervthe first row is output.
WRITE /.
ENDSELECT.

Enter zemployees-surname in the Fields mode of the debugger to view the contents of the
field. You will see the field contains “MILLS”. Also in the Watchpoints mode, the bottom
field will now be filled:

|\ T [Field names 1 - 4w |f Field contents
%:: enployees-surnane jMILLE 1 @,J;jﬂ

Current field contents of the last watchpaint reached:

-
Z_EMPLOYEE LT ST__.I ZEeNp]l oyees-SUrnane HIIILS

Ending a Debug Session

There are two ways to stop debugging a program. The first is to use the F8 key to run the
program all the way through to the end. Keep in mind though, that if any break or Watch-
points are set, the execution will likely pause and have to be started again, perhaps multi-
ple times. Also this method depends entirely upon the program executing successfully. If
any runtime errors are caused, the debug session will terminate and return you to the SAP
menu screen.

The alternative way of stopping the debugger is to enter the ‘Debugging’ menu and
choose ‘Restart’. This way, no more of the program will be executed, and you can return
to the ABAP Editor’s initial screen:

111

DEBUGGING PROGRAMS

| Debugging | Edit Goto Breakp

j

SARELLE

Single step FS
Execute F6
Return F7

Continue (to Cursor) F8

Execute BAI/PBO madue

Goto Statement
Database
Debugging off

Mo
EXNR) Shift+F3

112

ENHANCING DATABASE TABLES

Chapter 7: Working with Database Tables

Making a Copy of a Table

This chapter will look at ways in which one can change the transparent tables created ear-
lier. Itis important to know how to do this, and the implications of adding and taking away
fields for the underlying data in a database table.

Let’s take a look at the ZEMPLOYEES table created in Chapter 2. In the SAP GUI, key in
transaction code SE11 to access the ABAP dictionary, then display the table:

Transp. table ZEMPLOYEES Active
Short text Employees

__Attributes | Delivery and Maintenance - Fields Entry help/check |~ Currency/Quantity Felds

“mE EE [FEER] L] schhe ,
Field K.. | L.. | Dataelement DTyp Len.. Dec.. Short text

';mmc_j : 7! MARDT CLNT 3 0Clent
EMPLOYEE /| [V) ZEENUN NUMC 8 0Employee Data Element
SURNAME Z3URNAME CHAR 40 0Surname Data Element
FORENAME | ZFORENAME CHAR 40 OFarename Data Element
TITLE 1 ZTITLE CHAR 15 0Title Data Element
DOB ZD0B DATS 8 0Date of Birth Data Element

It is important to realise that whenever one wants to change a database table, there is a
risk of losing data, especially where key fields in the table are being affected. The database
system itself will try to determine whether adjustments can be made by deleting and cre-
ating new items which change the underlying database catalogue, or whether what has
already defined has to be re-implemented.

Quite often, when working with large tables, one has to manage the manipulation of the
data oneself, so as to be sure that data is not lost. Deleting fields is quite a simple task, the
table structure and its contents can add certain complications. Before starting any data-
base change tasks, it is important to mitigate against as many risks as possible, and start

113

ENHANCING DATABASE TABLES

by using a copy of the database table, allowing one to test out any changes one may want
to make, without affecting the initial table and its underlying data.

When you copy a database table, it is only the structure itself which is copied, meaning
only its properties - fields and so on, not the actual data.

Step back to the initial SE11 screen. With ZEMPLOYEES in the Database table field, click
the Copy button, then give the new table of ZEMPLOYEES2. The ‘Create Object Directory
Entry’ box will appear and as before, select ‘Local Object’:

gt 1 % F« H ﬂlﬂ

Copy... (Ctrl+F5)

[= Tt
¢ Database table ZEMPLD‘[EES _,D
View

[Copy Table
|| From
Table ZEMPLOYEES
to
Table TzEMPLOYEESZ | |
3 J _'Iﬂ

!)%

A copy of the table has now been created. Choose display at the SE11 screen and the copy
will appear. The table’s status will read as ‘New’. It must be activated, so click the ‘Change’
button (the Pencil icon in the toolbar), and then Activate:

% P o) L S ECH BB Technidsettings Indexes...

Transp. table ZEMPLOYVEESZ Mew
Short text Ernployees

Note that all of the fields in the table, since they have been copied, are already active. This
is why it is only the table itself which has to be activated here. If you try to look at the ta-

114

ENHANCING DATABASE TABLES

ble, you will find there are no contents, because only the structure was copied, not the
underlying data. To create records, from the ‘Utilities” menu, select ‘Table Contents’ and
then ‘Create Entries’ to display the screen where the records for the table can be created
as before.

Utilites] Extras Emdronment System Help

Sattngs.. 00 BE @B
Desplay object list Ctri+Shift+FS
i Worklist 3
| Display navigation window Ctrl+Shift+F4 _
1 tings Indexes... Append st
Activation log
' Datahase utility
I Databasa object ¥
Rurtirme Object b
i raphic Cirl+shift+F11 CurrencyQuantity Fields
. Table maintenance generator |
Tahle cortents 3 Display Ctri+Shift+F10
i where-used list Ctrl+Shift+F3 Create potries
' Wersions " [o client
Pl o ik W = [T TR T TR ——y

Insert some records, click the Contents button, and then view the new table:

Table ZEMPLOYEES2 Insert

Feset
Clier:
Employeas Mumbar 10000001
Surmame Smith
Farenarme Paul
Title Hr

i T o

Date of Birth 7. af?. zo1z [J

115

ENHANCING DATABASE TABLES

Data Browser: Table ZEMPLOYEES2 Select Entries 3
OrvewdadEESO

Tahle: ZEMPLOYEES

Displayed fields: 6 of 6 Fixed columns: :TE_: List width 0250
Client|Employee Humber| Surname Forename Ticle Date of Birth
% 10000001 SMITH PAUL MR 17.01.1930
ooo 10000002 EROWN IaN DR 15.07.1966
ooo 10000003 WILLIAMS SARAT MRS 11.08.1571

Add New Fields
Next, a new field will be added. This will be a non-key field and will be called INITIALS.

Create a new Data element for this named ZINITIALS using forward navigation. For the
data element, set the short text to ‘Initials’ and set the domain to CHARO3 (a character
string of length 3). In the Field label boxes type ‘Initials’, then activate the Data element.
The table should now have a new field like this:

LU LUUH DALS =] ULaate or Birth Data eElement
r
INITIALS ZINITIALS CHAR, I 3 U&nitialsl

Create another 3 more new fields and configure them as follows:

e Field Name ‘GENDER’
o Set the Data element to ZGENDER’. Configure the data element as follows:
= Short text: ‘Gender’
= Domain: ‘CHAROY’
= Field labels set to ‘Gender’
e SALARY
o Setthe Data element to ZSALARY
= Short text: ‘Salary’
= Domain: ‘CURRY’ (This has a length of 9, with 2 decimal places)
= Field labels set to ‘Salary’.

One thing to note about the Salary field is that, because it is a currency, another field for
this currency must be created and attached to ZSALARY to indicate what currency the sal-
ary is in. If you try to activate the table without doing this, an error message will appear
asking for a reference field to specify the currency.

116

ENHANCING DATABASE TABLES

Create a new field called ECURRENCY. Currency fields should already exist in the system,
so the Data element here will be a pre-existing one named CURCY. Type this, press enter
and the remaining fields should fill in automatically, leaving the new section of the table
looking like this:

Lusn LUun LalD =] ULMETE OT BIITh L'atd ElSment
INITIALS ZINITIALS CHAR 3 0 Iniitials

GENDER ZGENDER. CHAR 1 0Gender

SALARY][] ZSALARY CURR a 2 Salary

ECUREENCY CURCY CUEY z 5: 0Currency Key

Next, the system must be told that the Salary field is referencing the Currency field. Above
the table will be able to see a tab labelled ‘Currency/Quantity Fields’. Click this and the
table will be shown with two boxes to be filled in for the Salary field, since it has already
been specified that the domain for this field is Currency. In the ‘Reference table’ column
enter the name of the table, ZEMPLOYEES2’ and in the ‘Reference field’ column, the
name of the new Currency Key, ‘/ECURRENCY’. Now the table can be activated error free.

Attributes | Delivery and Maintenance + Relds -~ Entry help/check . CurrencyfQuantity Fields |

BlE[E[a] LT[seachhen 1/10

Figld Data elerment DTyp Reference table Ref. field Short tesxt
MANDT MANDT CLNT Clhiant:
EMPLOYEE ZEENUM NUMC Ermployesa Data Element
SURNAME ZEURNAME CHAR Surname Data Elernent
FOREHAME ZFORENAME CHAR Forename Data Element
ITITLE ZTITLE CHAR Title Data Element
OB ZDOE DATS Date of Birth Data Element
TNITTALS ZINITIALS CHAR Initizs

GENDER ZGENDER CHAR Gendear
:sm.mn’ jZSALART CURR ZEMPLOYEESZ ECURRENCY Salary
ECURRENCY CURCY CUKY Currency Key

Foreign Keys
As shown earlier enter a new record. You will see that the currency key does not offer any
kind of drop-down menu, here for this example, type GBP, indicating Great British Pounds:

117

ENHANCING DATABASE TABLES

Client
Employee Number 10000004
Surname ROSE
Forename ANN
Title MISS
Date of Birth 04.01.1985
Initials c
Gender ¥
Salary 12345

I3 9
Currency key [GBP |

Save the record, and then return to the design of the table, where we can now add some
error-checking to ensure that valid entries are made in the Currency key field.

To enable error-checking on the currency key field, we need to make use of a Foreign Key.
These are used to ensure that only valid values can be entered into a field. Use forward
navigation on the CURCY data element. Look at the Data type tab and you will see that the
data element refers to a standard SAP domain, WAERS:

Data element CURCY Active
Short text Currency Key

Attributes ~ Data Type | Further Characteristics - Feld label

i = = =14
»0oma Q L Drrency key
Data Type CUKY Currency key, referenced by CURR ..
Length S Decimal Places 0

Double-click the WAERS domain to use forward navigation again. Look at the ‘Value range’
tab in this window, a ‘Value table’ box is visible at the bottom, labelled TCURC:

vaue table TCURE |

118

ENHANCING DATABASE TABLES

A Value table can be used to determine the entries that can be made in the field based on
this domain. Double-click TCURC to again use forward navigation and this value table will
be displayed.

Transp. table ITcuRC 1 Active
Short text 'Currency Codes

Attributes | Delivery and Maintenance Fields | Entry helpfcheck | Currency/Quantity Fields

d—rﬁ Elg} @EIE|Q m Srch help] l Bufit-in type

Feld 4 K.. IL.. | Dataelement DTyp Len.. Dec.. Short text
‘M ,¥ @ maoT CLNT 3 0Chent
WAERS [Vl [¥] WAERS CURC CUKY 5 0Currency Key
1S0CD 1] ISocp CHAR 3 0150 currency code
ALTUR (] [[) ALTWR CHAR 3 0 Altemative key for cuencies
GDATU [1 [T} DATUM CURC DATS 8 0Date until which the currency is vaid
 XPRIMARY [] [XPRIMARY CHAR 1 0Primary SAP Currency Code for 1O Code

Use the data browser to look at the data in this table. If you scroll down, the GBP value
from before can be found, among a number of others. This table can be used to ensure
that, in future, only entries found in this table can be entered into our new table ZEM-
PLOYEES2

Table: TCURC
Displayed fields: 6 of 6 Fixed columns: 2 A0
Client|Currency|I50 code|Alternative kKey|Valid until|Primary

_|ooo ESP ESP 724 00.00.0000
_|ooo ETB ETE 230 00.00.0000
_|ooo EUR EUR 978 00.00.0000
| ooo FIM FIM 246 00.00.0000
_|ooo FID FID 242 00.00.0000
| ooo FKP FKP 238 00.00.0000
| looo [FRF FRF 250 00.00.0000
V000 GBP GBP 826 00.00.0000
'%: GEL GEL 981 00.00. 0000
o GHC GHC 288 00.00,0000
_|oo0 GIP GIP 292 00.00.0000
_|o00 GMD GMD 270 00.00.0000
000 GNF GNF 324 00.00.0000
000 GRD GRD 300 00.00.0000
000 GTQ GTQ 320 00.00.0000
000 GWP GWP 624 00.00.0000

119

ENHANCING DATABASE TABLES

Return to the ‘Maintain table’ screen for ZEMPLOYEES2, highlight the ECURRENCY field,

Choose ‘Yes’ in the box which appears and a ‘Create Foreign Key’ window will emerge.
Type the short text ‘Check Currency Field’. A small table is visible, detailing the two key
fields from the TCURC table and the ZEMPLOYEES2 table. The option is available to ensure
that the foreign key matches both fields, so that when the user is allowed to select an en-

and click the Foreign key button visible in the toolbar above:

try, the records returned will only be valid for the Client which is being worked in.

Here though, the Client is not to be chosen as part of the key, so select the Check-box
‘Generic’ for the top row, which refers to the Client, and remove the text from the two
boxes on this row where this is possible. Then click the ‘Copy’ button. The foreign key will
be created:

[E Create Foreign Key ZEMPLOYEES2-ECURRENCY

Shiort text Check Currency Field
Check tabha TCURC Ganerate proposal
Check ta.., ChkTabFld Forkey ... | Foreion key fiskd GEnEric Constant
TCURC MANDT v
TCURC WAERS ZEMPLOYEE.. ECURRENCY [
i b i
Screen check
W |Check required Error message Msgho Afrea
Sermantic attributes
Foreign key fisld typa)Mot specified

Non-key-fields/candidates
Key fields/candidates
“Key fields of a text table
Cardinality 15 |

Aoy g3 +])x] |

120

ENHANCING DATABASE TABLES

Activate the table, and then browse the data. Now, select the currency key and either
press the F4 key or select the drop-down box that appears, displaying all valid entries for
this field. If you were in record change mode you will then be able to select a value from
the table and see it update your zemployees 2 record. Try it out and select USD (US Dol-
lar).

[= Currency Key (1) 185 Enfries found

© Restrictions

-
v=H®E2E .

Cr...” Long text

TZ5 Tarzarian Shiling —
LIAH Ukraine Hryvnia b

LG '_Uqandan Shilling

LISD I_LirlitErr:.I Stateg Dollar |
LISOMN (Internal) Untsd States Dallar (S Dec.)
LY Uruguayan Peso (nes)

25 Uzhekistan Som

YWEE Wernezueslan Bolivar

YWHD Vietnamese Dong

WL Wanuatu Watu

WST Sarnoan Tala

¥AF Gabon CFA Franc BEAC

¥CD East Carribean Dollar

¥DS st Christopher Dollar

®EU Buropean Currency Unit (E.CLL)

XOF Benin CFA Franc BCEAD

XPF OFP Franc

YER Yermeni Ryal

YM Mew Yugoslavian Dinar =

AR, South African Rand -
185 Entries found

121

ENHANCING DATABASE TABLES

Table ZEMPLOYEESZ2 C‘han&-e

iZhedk table...
Client ooo
Ermnployves Number 10000004

I

Surname L_M
Farename ANN
Title HIsS
Date of Birth 04.01.1985
Initials C
Gernder F
Salary 12,345.00
Currency key UsD

Append Structures

Having looked at foreign keys, the next thing to look at are Append structures. These can
be used to add additional fields. This is the preferred method for maintaining SAP deliv-
ered tables and quite often for customer-specific tables. If one does not use Append struc-
tures, problems can arise if, for example, a new version of SAP is used which does not cor-
respond with aspects of the tables already created, resulting in serious errors.

Append structures give a safe way to enhance tables. When these are used, the initial ta-
ble remains unchanged, removing any risk of changes being overwritten later if a different
version of SAP is used. Quite often, a table may have multiple Append structures applied
to it, because different development needs have arisen as time has gone by and people
have wanted to add further fields to the standard SAP tables.

In the SE11 Maintain Table screen, go to the ‘Append structure’ button on the right of the
top toolbar:

g) % &8 B BB @l Technicd settings Indexes... Anperﬁisttucture...

ZEMPLOVEES2 Artive Append structure.., (FS)

122

ENHANCING DATABASE TABLES

Click this, and the system will suggest a name, ZAZEMPLOYEES2 (note that this, again,
must begin with a Z). Accept this and you will be presented with what looks like an empty
table structure. Enter the Short text “Extra Fields For Employees”, and then move down to
the table.

Note that the first field now is called ‘Component’. This is where new fields are created.
However, it may be useful to differentiate between fields created in the main table, and
the new components created here in the Append structure. Since both must comply with
the customer name rules, where Z was used in the main table, here use 7Z.

For the first component, a ‘Department’ field will be created. Type in the ‘Component” box
‘ZZDEPT’ and the same again in ‘Component type’. For this Component type, use forward
navigation in the same way that it was used for the Data element before, double-clicking
to create. Save the Append structure as a local object when prompted, and then select to
create a Data element when prompted subsequently.

The familiar data element screen will now appear. Type ‘Department’ for the short text,
use CHAR10 for the domain and ‘Department’ again for the Field labels, then activate the
data element. Step back to the Append structure screen, then Activate:

& Py o) 58 H Hierarchy diplay pend structure

Append structure ZAZEMPLOYEES2 Active
Short text Extra Fnaps For Ermployees

Attributes Components 7| Entry help/check Currency/quantity fields

Wﬁlﬁl@l@ lgf_} lqlg lﬁl Srch help H Bullt-in type Show appending objec
Component R... Component type DTyp Len... | Dec... Short text

y e
EEM 1 ZZDEPT CHAR 10 0Department

Return to the main table screen, where a new row displaying the Append structure will
have been created. To then access this structure, simply double-click the row. In Change
mode only the . APPEND’ line will be visible by default, but in Display mode the fields cre-
ated within this will appear below:

123

ENHANCING DATABASE TABLES

SALARY "] ZSALARY CURR 9 25alary
ECURRENCY CURCY CUKY 5 0Currency Key
. APPEND ZAZEMPLOYEES2 0 0Extra Felds For Employees

This is a very useful way to add new fields to a table without affecting the structure of the
table itself. If one then browses the data as normal, a new column will have been called
‘Department’. Data can then be entered into this field just like it can for any other:

Salary Currency key|Department
0.00
0.00
0.00
12,345.00 |U3D [

Include Structures

Include structures are similar to Append structures, with the main difference being that
they are re-usable objects and can be linked to many other tables, ABAP programs, dia-
logue programs and structures. It is important to keep in mind that Include structures
must be flat structures, meaning that they cannot hold any additional structure within
them, and that the maximum length of the fields within an include structure is 16 charac-
ters.

There is no Include structure button in the way that there is an Append structure button.
To create one, first ensure Change mode is selected. Where the cursor is placed is impor-
tant here, as wherever the cursor is when the Include structure is created, it will be cre-
ated one row above. If you want the Include structure to be part of the table key, it must
appear at the top, because all table fields used as a table key need to be grouped together
at the top. In this instance though, it will just be inserted above the Append structure.
Place the cursor on the . APPEND’ row, select the ‘Edit’ menu, then ‘Include’ and ‘Insert’.

| Edt | Goto Utlities Extras Enyronment Systemn Hel
Built-in type Ctrl+F6 g@ Q DHB Ot
Transfer fields ‘

{ Attribute from entity type i
Include » Integt
Cancel F12 Copy Components

124

ENHANCING DATABASE TABLES

In the window that appears, enter ZEMPL’ in the ‘Structure’ field and click the continue
button. A warning box will appear stating that this is not yet active, dismiss this, and the
Include structure should now appear in the table:

Et-ln type

Structure ZEMPL
I all
e |_|] ... | Short
0 Client
Marme suiffi
0 Ermploy
!ﬁ ® 0Surmanm
r N Cmr e 5
Continue (Enter)
ZTITLE CHAR FT) T L
| SALARY]| [} ZSALARY CURR 9 2Salary
\ ECURRENCY ‘ CURCY CUKY 5 0Currency Key
. cioe { ZEMPL 0o 0
| . APPEND ‘ ZAZEMPLOYEES2 0 0Extra Fields For Employees

To add a field to this, use forward navigation as before, double-clicking where ‘.INCLUDE
ZEMPL’ appears, save and choose ‘Yes’ to create the structure. The screen which then ap-
pears is very similar to the Append structure screen.

Type the Short text “Employee Include” and begin to create a field (the boxes are, like in
the Append structure, labelled ‘Component’), this time for location, called ZZLOCAT, and
use ZLOCAT for the ‘Component type’. Use forward navigation again to create this Data
element with Short text ‘Location’, the domain CHAR10 and ‘Location’ again for the Field
labels, then Activate this as usual. Activate the Include structure once the field has been
created and return to the main table to see the Include structure located just where we
wanted it, above the Append structure:

. o e T — - g

ECURRENCY | CUORCY CUEY 5 DCurrency Key
. INCLUDE ZEMPL 0 0Employvee Incude
. APPEND [ZAZEMPLOYEESZ 1] DExtra Felds For Employees

Activate the table now, and view the contents. The Location column should now be visi-
ble, and these records can now be edited and created like any other:

125

ENHANCING DATABASE TABLES

r key|Location \DEp&rtIﬂEﬂt
M

—

Client ooo
Employes Mumber 10000005
Surname z |
Forename ANDEEW
Title .12]

Date of Birth 04.01.1%62
Initials P

Gender n

Salary 245,200
Currency key HUF
Location LOND ON
Department IT

If one switches to Display mode, the field created in the Include structure can be seen in
the context of the main table, albeit in a different colour:

126

ENHANCING DATABASE TABLES

Attributes - Delivery and Maintenance ./ Fields Entry help/check | Currency/Quantity Fields

I type

“BFE EE [FEER] LR schhe | |

Fiald K.. L.. Dataelement DTyp Len.. Dec... Short text
:EURNME : [[ZSURNAME CHAR 40 0Surname Data Blement
FORENAME [] [} ZFORENAME CHAR 40 OForename Data Element
TITLE ‘ ZTITLE CHAR 15 0Title Data Element
DOB ZD0B DATS 8 0Date of Birth Data Element
INITIALS (] [} ZINITIALS CHAR 3 01Initials

GENDER 1 [ZGENDER CHAR 1 0Gender

SALARY { ZSALARY CURR 9 2Salary
ECURRERCY CURCY CURY 5 0Currency Key

. INCLUDE 0| [zEmeL 0 0Employee Include
ZZLOCAT 7| [0 ZLOCAT CHAR 10 OLocation

. APPEND | ZAZEMPLOYEES2 a 0Extra Felds For Employees
ZZDEPT ") ZZDEPT CHAR 10 0Department

In Change mode, these fields can be seen by selecting the *.INCLUDE’ row and clicking the
‘Expand include’ icon (the same works for the Append structure also):

Q[[EJ El@ ﬁ@?lgj [.4_?1 Srch help | [Built-in type j

Field K.. | L.. Expand include DTyp Len,... Dec.. Short text
SURNAME (1 [ZSURNAME CHAR 40 0Surname Data Blement
FORENAME 8 ZFORENAME CHAR 40 OFarename Data Element
TITLE ‘ ZTITLE CHAR 15 0Title Data Element
DOB \ ZD0B DATS 8 0Date of Birth Data Element
INITIALS (1 [] ZINITIALS CHAR 3 01nitials
GENDER 1 [ZGENDER CHAR 1 0Gender
SALARY [ZSALARY CURR 9 2Salary
ECURRENCY \ CURCY CUKY 5 0Currency Key
j (1| [J zEmMrL] 0Employee Include
ZZLOCAT [ZLOCAT CHAR 10 OLaocation
Key Fields

If you want to add or remove fields which are designated key fields, then it is important to
take into consideration what will be going on in the database itself. All of the new ele-
ments which have been created for this table have their features applied by the system to
the ABAP dictionary, not the underlying database. When any key field is adjusted, the sys-
tem has to apply changes to the underlying database itself. If there is data in the table,
and key fields are changed, this can have unintended consequences.

127

ENHANCING DATABASE TABLES

If you introduce a new key field, this will probably not have a large effect. However, if one
makes a key field no longer a key field, this will require consideration, because if there is a
lot of data in the underlying database, by taking away a key field, duplicate records could
be introduced. Corrupt data or records being deleted from the table can also happen here.

Let’s see how we can add, remove and alter fields without these hazards.

Open the full ZEMPLOYEES2 table in the ABAP Dictionary ‘Maintain Table’ screen. Let’s
change the ‘Surname’ field by turning it into a key field.

Check the two boxes (key and Index) by ‘SURNAME’ and Activate the table. When you now
view the table contents, the surname column will be a darker colour, indicating that it is
now a key field. Beyond this though, it appears very little has changed:

XoEER [(eREEE L

'

Field K I... Data element
MANDT |Key V! HANDT
EMPLOYEE v v' ZEENUM
———— i, o TR
SURNAME v LJJ ZSURNAME
FOREHAME | ZFOREHAME
Displayed fields: 12 of 12 Fixed columns: IEJ List width 0250
Client|Euployee Number| Surname Forename
| 000 10000001 SMITH PAUL
000 10000002 EROWN IAN
{000 10000003 WILLIAMS SARAH
| 000 10000004 ROSE ANN
000 10000008 GREEN ANDREW

Now, uncheck the boxes on the ‘Maintain Table’ screen, to make it no longer a key field.
When you try to activate the table an error message appears, refusing to activate the ta-
ble as data may be lost with the removal of a key field:

&) TABL ZEMPLOYEESZ was not activated
Check table ZEMPLOYEESZ (BCUSER/17.07.12/15:20)
0ld key field SURNAME is now non-key field
@ structure change at field level (convert table ZEMPLOYEESZ)
Check on table ZEMPLOYEESZ resulted in errors

9484

128

ENHANCING DATABASE TABLES

To activate the table against what seem to be the wishes of the system (after all, one
knows the data will be fine as the surname field has not been operating as a key field at
any point previously), a different transaction must be used.

From the ‘Utilities’ menu, select ‘Database utility’, or use transaction code SE14. A new
screen will appear:

ABAP Dictionary: Utility for Database Tables

I:E Indexes,.. Storage parameters Check... Object log ﬂ

T 1

I;I-Iame . ZEMPLOYEES2 Transparert table

Short text Ermployees

Last changed BCUSER 17.07.2012

Status Reviged Saved h

Exists in the database

Execute database operation
Processing type
* Direct
_IBackground
Enter for mass processing

| Delete database table |

| Activate and adjust databass # Save data Delete data

This transaction lets us automatically adjust the data held in our table when making ad-
justments to the database table structure. Environments where tables are being worked
on may contain a huge number of records. With this in mind, this transaction can be exe-
cuted as a background process. However, for our example the ‘Direct’ option is the option

129

ENHANCING DATABASE TABLES

to choose because we know we have very few records in our database table. Select this,
and then click ‘Activate and adjust database’ with ‘Save data’ radio button selected. Say
‘Yes” when the box asks “Request: ‘Adjust’” and notice the status bar should indicate the
success of this execution. Then, step back to the ‘Maintain Table’ screen and you will see
the table should be Active with the surname field no longer key.

To insert a new field as part of the table key, you must be able to adjust the location of
fields on the screen. For example, if you wanted to create a new field above the surname
field, you would highlight the row and then click the ‘Insert row’ icon in the toolbar. This
toolbar also includes ‘Cut’, ‘Copy’ and ‘Paste’ options, allowing for rows to be moved up
and down if there is a need to do this:

MDom EE [P L] scheo ||

Field T K.. . Data element DTyp Len
wapt SO S manoT CLNT
EMPLOYEE 7| [V ZEENUM NUMC

— v
m | ZSURNAME CHAR

Deleting Fields

While infrequent, occasionally there may be a need to remove a field from a table. When
doing this, it is important to take special care, as data can be lost in the process. Certainly
in the case of key fields.

If, for example, the Currency key field was removed from our table, the foreign key rela-
tionship to the TCURC table would be removed. As the SALARY field has to have a related
Currency Key this would cause the table to no longer continue working, and likely make
the ZEMPLOYEES2 table become inactive.

When deleting fields it is important to ask oneself whether the data being held in the table
is being used elsewhere, and whether its deletion will have further consequences. If you
do try to delete fields which are being used elsewhere, the SAP system should try to pre-
vent this, or at least issue a stern warning. This is not necessarily to be relied upon though,
so always ensure to check manually what the effects of deletion are likely to be. Also, if

130

ENHANCING DATABASE TABLES

you do delete fields, the table will have to be adjusted via the SE14 transaction to be acti-
vated again.

Create a new field, above “.INCLUDE’, named ‘ZAWESOME’. Use a previously created Data
element, here ZTITLE just to save time, and activate the table:

ECUREERCY CURCY CUEY 5 OCurreancy Key
ZAWNESONE ZTITLE CHLE 15 0 Title Data Element
. THCLIDE 7EMPL n 0 Franlmsiae Tock ida

Create a new record in the table. The data here is not important and will be deleted, so
the content can be anything:

Client
Employee Murnber 10000010
Surmname e
Farename e
Title (TITLE) e
Date of Birth 04.01.1%52
Initials q
Gercler .|
Salary 1234
Currancy key GEP
Title (ZAWESOME) anfE s ome
Location LOND 0N
Department " 1
— =i |
Currency key|(Title Location |IL
s PARIS E
HUF LoMDoN
GEP AWVESOME LONDON E

131

ENHANCING DATABASE TABLES

Now, to delete the field, highlight it in the ‘Maintain Table’ screen, and click the ‘Remove

row’ icon,

in the toolbar next to ‘Insert row’. The row will disappear, but when you try to

activate the table, an error message will appear:

@
P

@) TABL ZEMPLOYEESZ was not activated
Check table ZEMPLOYEESZ (BCUSER/18.07.12/10:25)
Field ZAWESOME was deleted
ALTER TABLE is not possible
A Structure change at field lewvel (convert table ZEMPLOYEESZ)
Check on table ZEMPLOYEESZ resulted in errors

Transaction SE14 must again be used to adjust the table so the change can be applied. Fol-
low the same steps as in the previous section to perform this task. Once this is complete,
view the table again. The column has disappeared, and the data which was contained
within it lost:

Currency key|Location

3D PARIS
HUF LONDOM
GBF LONDON

L

To see what happens when a key field is deleted, return to the ABAP Dictionary initial
screen and make a copy of ZEMPLOYEES2, called, unsurprisingly, ZEMPLOYEES3. Doing this
will allow the ZEMPLOYEES?2 table to not be damaged in this risky procedure. Activate the
new table (which, don’t forget, will be empty of records). As before, again make the Sur-
name field a key field. Now create some records for this table:

—_

Client|Enployee Humber| Surname Forename Title
@000 10000001 SHITH PAUL MR
oon 10000001 SMITHZ PAUL ME
ooo 10000002 ANDREWS PAUL ME
ooo 10000002 ANDREWS-2 PAUL MR

132

ENHANCING DATABASE TABLES

To save time creating new records, the same data was replicated here, with only slight
changes to the key fields. Remember that it is only one key field per entry which must be
unique for that particularly record to be unique itself.

Now, the surname field will be deleted, and the effects of deleting this key field observed.
By removing this key field, the only unique data which will be held for each record will be
the Employee Number and Client. Since SMITH and SMITH2, and ANDREWS and AN-
DREWS-2 have the same Employee Number and Client, these will no longer hold unique
key field data, leaving duplicate records, which the system will not allow.

Remove the Surname field; try to activate the table, and error messages will appear. Go
through SE14 to adjust the table for activation. When you now view the table, the Sur-
name field is gone, and two records have been lost, leaving only one of the two records
for each of the two Employee Numbers used:

Client|Employee Bumber| Forename Title Date

ooo 10000001 PAUL ME 01.0

ooo 10000002 PAUL ME 01.0
Deleting Tables

One will not often have to delete an entire database table, for largely the same reasons as
were outlined above for fields. If this does have to be done it is important to remember
that one’s own customer-specific tables are the only ones which can be deleted, SAP de-
livered tables cannot be deleted. Because ZEMPLOYEES3 has only just been created, and
nothing else depends on this table, it can be deleted without consequences.

To check whether a table can be deleted without causing unintended consequences else-
where in the system, return to the ABAP Dictionary’s initial screen. Because the original
ZEMPLOYEES table was used in the programs which have been created, use this as a test.

Insert this into the Database table field on the screen and then click the ‘Where-used list’
icon from the toolbar.

133

ENHANCING DATABASE TABLES

ABAP Dictionary: Initial Screen
go * H OO

Where-used list (Ctri+Shift+F3)

5 o)
« Database table ZEMPLUYEES _,D
View

Once this is clicked, a dialogue box will appear offering a list of check-boxes. This will then
search all of the different areas of the SAP system selected for references to the table
ZEMPLOYEES. To execute this search click the Continue icon. Choose ‘Yes’ to the pop-up
box, and wait while the system compiles the search results, which here show that this ta-
ble is being used currently by 2 programs:

Database table ZEMPLOYEES (2 Hits)
% P26 o0 £ AFHE BWTEBEBEB T combnedit

Program Short description
=

C ,Z_EMPLOYEE_LIST 01 My Employee List Report
Z_RELEASE 4 Release 4

Having done this, one now knows that if the ZEMPLOYEES table were to be deleted, these
programs would become inactive. By double-clicking these entries, one can see the code
in the program where ZEMPLOYEES is referred to, and if you double-click on any line of
the program, it will open the program at that line of code in the ABAP Editor. The Where-
used button is a very useful tool, which can be invaluable not just when deleting pro-
grams, but in many other scenarios.

If you were to try to delete ZEMPLOYEES, the system would not allow this course of action
and would prevent it from happening until all the programs that are dependent upon it
were either edited to remove references or deleted altogether themselves.

Since nothing depends upon ZEMPLOYEES3, this can be deleted. With the correct name in
the ‘Database table’ field, click the ‘Delete’ button in the toolbar:

134

ENHANCING DATABASE TABLES

ABAP Dictionary: Initial Screen
go 1 = fe H %ED

* Datahase table ZEMPLOYEES3)
BLY =

'Data type
) Type Group ZEMPL

Damaln
1 Saarch help
TiLock object

|&r’ Display | |d’ Change | |D Create |

A box appears stating that the data contained in the table would also be deleted. If you
click the green tick icon this time, the system would return to the main screen with the
table still intact. If the middle button, illustrated with the trashcan icon is clicked, this will
proceed with the deletion. Once this is done, the status bar should confirm the action. If
you try to display the table now, it does not exist. Once the deletion is completed, it can-
not be undone:

(S Delete Table ZEMPLOYEES3

@ZTable still contains data.
Data wil also be deleted during deletion.

M% t3
clote (Shft+F2)

ZEMPLOYEESS was delstad

135

WORKING WITH OTHER DATA TYPES

Chapter 8 — Working with Other Data Types

Date and Time Fields

This section will look at some other data types which can be used in ABAP. So far, numeric
fields have been used for performing calculations, and character strings have been exam-
ined along with the ways these can be manipulated with ABAP statements. Now, date and
time fields will be looked at.

Enter the ABAP editor (with transaction SE38) and make a copy of the previous program,
alter the comment sections, and remove most of the code:

ABAP Editor: Initial Screen
go t O R H T OB Ovebugong Owith vaiant & variants

y

Program 'Z_CHARACTER_STRINGS 1O ceate

[= Copy Program Z_CHARACTER_STRINGS

" souce program |Z_CHARACTER_STRINGS
IF
Target program LZ__O’I'}ER_DATA_’I’{PESI

S Display / Change

136

WORKING WITH OTHER DATA TYPES

ABAP Editor: Change Report Z_OTHER_DATA_TYPES
= g v B ST @ eatten Pretty Printer

Report Z_OTHER_DATA_TYPES Inact.

FC)R) @5 M)EE Bl
L S —— +
*& Report Z_OTHER_DATA_TYPES *
wy *
K.:' ___ v
|‘|.:')

REPOET I _OTHER_DATA TYPES
* Date and Time Fields I

DATA:

TERN AN ENE NN ENEARANTENEARAEAENE

Date and time fields are not stored as numeric data types, but instead as character data
types. Effectively, they are character strings which can be used in calculations. This is
made possible by the inbuilt automatic data type conversions which have previously been
discussed. Just like any other data type, the DATA statement is used to declare these
fields.

For a date field, the data type is referred to with ‘d’, and is limited to 8 characters. The
first 4 of these represent the year, the next 2 the month, and the final 2 the day. The
VALUE addition is used to specify this, and if it is not used then the value, by default, is
assigned as 8 zeros. In the example below, the date is the 1* of January, 2012:

REPORT z_other_data_types
* Date and Time Fields

* Date fields format: YYYYMMDD with inicial walue of '00000000'
DATA my date TYPE d VALUE '20120101'.

TER 2N IR AR RNERNEANNERNIARANERN Y

137

WORKING WITH OTHER DATA TYPES

The LIKE statement, of course, can also be used. SY-DATUM is a system variable, which
always holds the value of the system’s date. Below, “my_date2” is defined in the same
way as this system variable:

DATA my datez LIFE SY-DATUM.

Time fields work similarly, but this time are limited to 6 characters. The first 2 refer to the
hour, the second 2 the minute, and the final 2 the second. Again, the default value will be
6 zeros. The data type this time is ‘t’. Again, the LIKE statement can be used, here for the
system’s time field, referred to with SY-UZEIT:

* Time fields format: HHMM3S with initial walue of "000000
DATA my _time TYPE © VALUE 'l111005'.

DATA my time: LIEKE sy-uzeit.

T AT N INEN T I A IN AN N TINEANAAWNEND

We can then use the WRITE statement to output the field contents:

WRITE: my date,
/ my_dateZ,
/ my time,
S my_timez,

uline.
TR AT A TN EN AT ATNEAA AN ENEAATNE

0l01zZ0lz
00.00. 0000
111005
QOo:00:00

Note that in the first row the my_date field has reversed itself to the format DDMMYYYY.
In the second, no value was assigned to the field, so the system has output the default
zeros. However, as this was defined like the system’s date variable, it has included periods
in the formatting. This also applies to the my_time2 field, where colons have appeared
between the places where the time values would ordinarily be.

Date Fields in Calculations

138

WORKING WITH OTHER DATA TYPES

Some examples of performing calculations with date and time fields will now be looked at.
Using these fields in calculations is common practice within programming business sys-
tems, as one will often have to, for example, find the difference between two dates to de-
liver invoice dates, delivery dates and so on. Here, examples will be looked at so as to find
new dates, and find the difference between two dates.

Use the DATA statement to declare a start date for an employee, called “empl_sdate”, and
then give this a value of 20090515’. Then create another field called “todays_date” and
define the value of this as ‘sy-datum’, the system variable, which should then include the
date on that particular day:

DATA empl sdate TYPE d.
DATA todays_date TYPE d.

enpl sdate = *Z00%0515°.
todays_date = sy-datum.

Next, a calculation will be added, so as to work out this employee’s length of service. Cre-
ate a new variable named “LOS”, include a DATA statement giving “LOS” a data type ‘i’
and then define LOS as the calculation ‘todays_date — empl_sdate’. Then, add a WRITE
statement for this variable, which will include the employee’s length of service in the out-
put. Once this is complete, execute the code:

DATA empl sdate TYPE d.

DATA todays_date TYPE d.
DATL LOJ cype 1.

empl sdate = 'Z20050515'.

todays date = ay-datum.

los = todays date - empl sdate.
WRITE / los.

1,160

If one wants to add, for example, 20 days to today’s date, the same value is used for to-
days_date (the system variable, sy-datum). Create another variable, called “days_count”
with an integer value of 20, and another called “fut_date”. This variable’s value should
then be defined as ‘todays_date + days_count’, then ad a WRITE statement to output the

139

WORKING WITH OTHER DATA TYPES

fut_date. Don’t forget also to add the data types above (‘i’ for days_count and ‘d’ for
fut_date). The output should give the date 20 days on from today’s date, which here is the
7" of August, 2012:

todays date = sy-datum.

days_count = 20.

fut _date = todays date + days count.
WRITE / fut_date.

DATA days_count TYFE i.
DATA fur_date TYPE d.

wwwwww e el SR SR

07082012

Subfields can be used for date fields in exactly the same way as they were used before. In
the next example, a date field will be changed to represent the 20" day of the current
month. Copy the todays_date variable, then add a new line of code which changes the last
two figures of todays_date to the value 20’, and a WRITE statement. Also, output the sys-
tem date so as to compare the two:

todays_date = sy-datum.
todays date+&(2) = '20'.
WRITE / sy-datum.

WRITE / todays date,

18.07.2012
20072012

In this next example, the last day of the previous month will be established. Use the to-
days_date variable again, this time using the subfield method above to change this to rep-
resent the first day of the current month. Then on a new line of code, subtract one from
this, so that the todays_date variable is now the final day of the previous month:

todays_date = sy-datum.
todays_date+6(2) = 'OL'.
todays_date = todavs_date - 1.
WRITE / todays_date.

J006z012

140

WORKING WITH OTHER DATA TYPES

Time Fields in Calculations

Calculations like those above can also be performed with time fields.

In the examples, employees’ clocking in and out times will be used. Use DATA statements
to declare the variables “clock_in” and “clock_out” as type ‘t’, along with others seen in
the image below, which will be used for calculations to work out the differences between
times in seconds, minutes and hours, all of an integer type:

* Field for Time Calculations
DATA clock_in TYPE .
DATA clock_out TYPE .
DATA seconds diff TYPE 1.
DATA minutes diff TYPE 1.
DATA hours_diff TVPE i.

Assign values to clock_in and clock_out of ‘073000’ and ‘160000’ respectively. Then, to
work out the difference between the two in seconds, use the calculation ‘clock_out -
clock_in’ and assign this value to “seconds_diff”. Then include some WRITE statements to

output this information:

* TIME CALCULATIONS

clock_in = '073000°.

clock_out = 'L1&0000°'.

geconds diff = clock_out - clock_in.

WRITE: / 'clock in: ', clock_in, ! clock out: ', clock_out.
WRITE / seconds diff.

clock in: 073000 clock out: 1&0000
30,600

To establish the difference in minutes, simply use the seconds_diff value, and divide this
by 60, and then to establish the hour’s difference, follow this by dividing minutes_diff by
60:

winates diff = seconds_diff / a&0.
WRITE: ¢ 'difference in minuwtes: ', minutes diff.

hours diff = mirmutes diff / &0.
WRITE: / 'differsnce in hours: ', hours diff.

141

WORKING WITH OTHER DATA TYPES

difference in mirmtes: 510
difference in hourss: 9

Note that here, the 510 minutes do not, in fact, equal 9 hours exactly, the system has
rounded the number. This is because the hours_diff variable was declared as an integer. If
the data type for this is changed to a packed decimal, the value would have been estab-
lished as the more accurate 8.5 hours:

VALA MINUCES_0OLIT IiFE 1.
DATA hours_diff TYPE p decimals Z.

difference in hours: §.50

Quantity and Currency Fields in Calculations

Now, a look will be taken at using quantity and currency fields in calculations. In ABAP,
these are treated the same as packed number fields. Currency fields must be declared as
data type ‘p’, bearing in mind how many decimal places are required. This is important, as
having the right number of decimal places can have a large impact on the accuracy of cal-
culations.

Quite often in a program, one wants to create one’s own variables for quantity and cur-
rency fields. It is usually better, however, to associate these fields with the data types of
those in a table created in the ABAP dictionary. This is because the ABAP dictionary will
already have defined the correct field length and number of decimal places for these. For
example, the Salary field in the table created previously had defined two decimal places. If
a currency field in a program is declared to match this field but the data type in the pro-
gram is set manually to 2 decimal places and the number of decimal places in the table
was to change, the program would no longer operate properly here. For this reason, it is
usually preferable to use the LIKE statement for these fields.

In this example a new variable named “my_salary” has been declared using the LIKE
statement:

* Field for Currency Calculations
DATA my =zalary LIFE zemployeesZ-salary.

Because this field in the program is linked to the field in the table, the system will ensure
these data types are kept in sync. There are two aspects to this process, the number of

142

WORKING WITH OTHER DATA TYPES

decimal places, and the associated currency (or quantity) keys. If you look at the CURR
data type in the ABAP dictionary, you will see that this is stored as a decimal - 9 characters
and 2 decimal places. You can also see that its internal format is ABAP type p, packed
decimal:

. A :
{CURR | Currency field, stored as D

LT e Fimbem femlad APPSR ARAMS Y = R e Linkl

Formatiing

I Tt
Data type | CURR J t
Mo, characters |
Decmal places 2

Internal format
ABAP type F

Additionally, don’t forget that the salary field and its currency data type always refer to
the currency key field, in the table called ECURRENCY. Ultimately, then, when one is de-
claring fields in ABAP, it is important to reference these to the associated fields in a table,
and when working with currencies, the currency key field will always be there and should
be taken into account. The same applies to quantity fields. The only difference is their data
type is QUAN, and rather than a currency key, will always have a UNIT associated with
them.

Now, using calculations from the currency field, an employee’s tax and net pay amounts
will be established, so declare two more DATA statements for these fields, again referenc-
ing the salary field in the table. Also add a tax percentage variable, of type p with 2 deci-
mals:

" Field for Currency Calculations

DATA my salary LIFE zemployeesiZ-salary.

DATA my tax ant LIFKE zemployeesi-salary.

DATA my net pay LIFKE zemployeesi-salary.
DATA tax perc TYPE p decimals 2.

Add a TABLES statement so that the program knows to refer to the ZEMPLOYEES?2 table,
then observe the calculations in the code below:

143

WORKING WITH OTHER DATA TYPES

FEPORT =_other_data_ types

TABLES: zemployeesZ,

tax_perc = 0,20,
SELECT * FROM zemployeesZ.
WRITE: / zemployeesZ-surname, zemployeesZ-salary, zemployeesZ-ecurrency.
my_tax_amt = tax_perc * zemployeesZ-salary.
my_net _pay = zemployeesZ-salary - my_tax_amt.
WRITE: / my_tax_amt, zemployeesZ-ecurrency,
By net_pay, zemployeesZ-ecurrency.
ERDSELECT.

First, the tax percentage is established. This is in this example 20%, so for the means of the
calculations is written as 0.20. Then the code will select records from the ZEMPLOYEES2
table, and write the surnames, salaries and currencies for these. Next, the tax amount is
established, by multiplying the tax percentage by the salary. Net pay is equal to the salary,
minus the tax amount. Then add a WRITE statement to output the results the end of the
SELECT loop. The output should look like this (where salaries and currencies are not pre-

sent in the table, go back and edit the records in your table to put some values):

SMITH 1,111.00 ATS
222.20 ATS 888.80 ATS

BROWN 2,222.00 BDT
444.40 BDT 1,777.60 BDT

WILLIAMS 6,423.00 FJD
1,284.60 FJD 5,138.40 FJD

ROSE 12,345.00 TUSD
2,469,00 USD 9,876,000 USD

GREEN 2,452.00 HUF
490.40 HUF 1,961.60 HUF

QUE 1,234,.00 GBP
246.80 GBP 987.20 GBP

The surname, salary and currency for each record are written on the first line, followed by
the tax amount and net pay on the following line. To make this look tidier, descriptive text

can be added to the WRITE statements in the code:

144

WORKING WITH OTHER DATA TYPES

SMITH 1,111.00 ATS
tax amount: 222.20 ATS net amount: 886.80 ATS
BROWN 2,222.00 BDT
tax amount: 444.40 BDT net amount: 1,777.60 BDT
WILLIAMS 6,423.00 FJD
tax amount: 1,284.60 FJD net amount: 5,138.40 FJID
ROSE 12,345.00 USD
tax amount: 2,469,000 USD net amount: 9,876.00 USD
GREEN 2,452.00 HUF
tax amount: 490,40 HUF net smount: 1,961.60 HUF
QWE 1,234.00 GBP
tax amount: 246.80 GBP net amount: 987.20 GBP

145

MODIFYING DATA IN DATABASE TABLES

Chapter 9 — Modifying Data in a Database Table

Authorisations

When writing programs using open SQL, one has to bear in mind the concepts of authori-
sation in an SAP system. An SAP system has its own security tools to ensure that users can
only access data which they are authorised to see. This includes individual fields as well as
individual records. The way authorisations are set up can also limit how data is used,
whether a user can only display data or whether they can modify it. All the rules pertain-
ing to this are stored as authorisation objects. These will not be examined in great detail
here, but ordinarily users are assigned their own authorisation profile (or composite pro-
file) against their user record, which for informational purposes is managed through
transaction code SUO1.

This profile then gives the user the correct rights within the program to then carry out
their job and SAP delivers many predetermined user profiles with the base system. The
system administrators can then use and enhance these to be applied to users. Once a user
has one of these profiles, the system will tell them whether or not they can execute a
transaction when they try to do this. For example, transaction SE38, the ABAP editor,
could be tweaked so that while some users may be able to access it, perhaps they can only
do so in display mode, or perhaps they can display and debug the code, but not change it
themselves.

Where specific authorisations have not been implemented, programs can be made to
carry out an authority check, using the statement AUTHORITY-CHECK. This must be used if
a program or transaction is not sufficiently protected by the standard authorisation pro-
files already set up in the system.

While, this will not be examined in great detail here (the topic is huge in itself), it is impor-
tant to bear authorisations in mind when working in SAP.

Fundamentals

So far, reading data from database tables has been looked at, now modifying and deleting
this data will be examined. There are some important concepts to keep in mind here, for

146

MODIFYING DATA IN DATABASE TABLES

example, the architecture of the system. If one has a three-tier architecture (with a pres-
entation layer, an application server and an underlying database), you must bear in mind
that there may be a very large number of users accessing the data at any one time. It is
important to ensure that programs created do not cause any problems in the rest of the
system and that the most recent version of the data held on the database is accessed
when a program runs. If records are constantly being updated, programs must be able to
read and work with data which is current in the system. Fortunately, most of this work is
done automatically by the SAP system, and one doesn’t have to worry too much about the
underlying technologies related to how data is locked and so on.

One of the key tools which can be used is Open SQL. This acts as an interface between the
programs created and the database. By using Open SQL, one can read and modify data,
and also buffer data on the application server, which reduces the number of database ac-
cesses the system has to perform. It is the database interface which is also responsible for
synchronising the buffers with the database tables at predetermined intervals.

When one is creating programs it is important to keep in mind that if data is buffered, and
this buffered data is subsequently read, it may not always be up to date. So, when tables
are created, they must be created in such a way that the system is told that buffering can
or cannot be used, or that it can only be used in certain situations. When the example ta-
bles were created earlier, the system was told not to use buffering. Using this setting
means that every time data is read from a table, it will always use the most up to date re-
cords.

Buffering can be useful for tables which hold master data and configuration settings, be-
cause this kind of data does not get updated regularly. When one is working with transac-
tional data however, one wants this data to be as up to date as possible. If transactional
data is being used in a context where tables are using buffering, it is important to ensure
that programs related to this can take this into account, and make sure that the buffer is
updated with new data when this is needed.

When one uses Open SQL statements in a program, tables can only be accessed through
the ABAP dictionary. This acts as an interface, one does not access the tables directly
through programs. This is not a problem however, as when one uses Open SQL state-
ments, it works just the same as if one was accessing the database directly. Open SQL
manages its interface with the database by itself, without the need for the user to do any-

147

MODIFYING DATA IN DATABASE TABLES

thing here. Statements can be coded just as though they had direct access to the tables,
though with the underlying knowledge that by using Open SQL, the data is in fact being
accessed through the ABAP dictionary with a built-in level of safety to ensure the ABAP
code does not have a direct effect on the SAP database system itself.

Database Lock Objects

Now, locking concepts will be considered. This refers to locking data in database tables
and there are two basic types of locking which must be kept in mind. First of all, database
locks. These lock data in a physical database. When a record is updated, a lock is set on
this, then when it is updated the lock is released. It is there to ensure that, once set, the
data can only be accessed and updated by those authorised to do so. When released, it
can be accessed more widely.

These locks, though, are not sufficient in an SAP system, and are generally only used when
a record is being modified in a single step dialogue process. This process refers to any time
that the data in a database can be updated in a single step, on a single screen. In this case,
the data can be locked, updated and released very quickly.

As you work more with SAP, the insufficiency of database locks will become clearer, be-
cause transactions in an SAP system often occur over multiple steps. If, for example, an
employee record is added to the system, one may have to fill in many screens of data. The
user in this case will only want the record to be added to the system at the end of the last
screen, once all of the data in all of the screens has been input. If just the first screen’s
data was saved into the database, then the second’s, and so on, one by one, if the user
were to quit halfway through the process, an invalid and unfinished record would be in
the database.

This demonstrates the hazard of using database locks with multi-step dialogue processes.
For these instances, SAP has introduced a new kind of lock, independent of the database
system. These are called lock objects, and allow data records to be locked in multiple da-
tabase tables for the whole duration of the SAP transaction, provided that these are linked
in the ABAP dictionary by foreign key relationships.

SAP lock objects form the basis of the lock concept, and are fully independent of database
locks. A lock object allows one to lock a record for multiple tables for the entire duration
of an SAP transaction. For this to work, the tables must be linked together using foreign

148

MODIFYING DATA IN DATABASE TABLES

keys. The ABAP dictionary is used to create lock objects, which contain the tables and key
fields which make up a shared lock.

When the lock object is created, the system automatically creates two function modules,
which will be discussed later. These function modules are simply modularised ABAP pro-
grams that can be called from other programs. The first of these has the action of setting a
lock, and the second releases this lock. It is the programmer’s responsibility to ensure that
these function modules are called at the correct place in the program. When a lock is set,
a lock record is created in the central lock table for the entire SAP system. All programs
must adhere to using the SAP lock concept to ensure that they set, delete and query the
lock table that stores the lock records for the relevant entries.

Lock objects will not be discussed much further, however subsequent programs created,
tables accessed and so on here will be done on the assumption that they are not to be
used outside of one’s own system.

Using Open SQL Statements

Now, some of the Open SQL statements which can be used in programs will be looked at.
As mentioned before, Open SQL statements allow one to indirectly access and modify
data held in the underlying database tables. The SELECT statement, which has been used
several times previously, is very similar to the standard SQL SELECT statement used by
many other programming languages. With Open SQL, these kinds of statements can be
used in ABAP programs regardless of what the underlying database is. The system could
be running, for example, an Oracle database, a Microsoft SQL database, or any other, and
by using Open SQL in programs in conjunction with the ABAP dictionary to create and
modify database tables, one can be certain that the ABAP code will not have any issues
accessing the data held by the specific type of database the SAP system uses.

When the first database table was created previously, the field MANDT was used, repre-
senting the client number and forming part of the database table key, highlighted below:

Attributes Delvery and Mantenance Fields Entry helpfchack Cunency/guantityrl:ields

“RE EE (Al L] sdhe][pe |
Fiekd K.. L. Dataelement DTyp |Len.. Dec... Short text
m j N MANDT CLNT 3 0Client
PLOYEE : /| ZEENUM NUMC 8 DEmployes Data Element
SURNANE ZSURNANE CHAR 40 0Sirname Nata Flement

149

MODIFYING DATA IN DATABASE TABLES

One may think that, given the importance of this field, it would have to be used in ABAP
programs when using Open SQL statements, however, it does not. Almost all tables will
include this ‘hidden’ field within them, and the SAP system is built in such a way that a
filter is automatically applied to this field, based on the client ID being used. If one is
logged in, for example, to client 100, the system will automatically filter all records in the
database on this client key and only return those for client 100. When Open SQL is used in
the programs one creates, the system manages this field itself, meaning it never has to be
included in any selections or update statements used in programs. Also, this carries the
benefit of security in the knowledge that any Open SQL statement executed in a program
will only affect the records held in the current client.

Using Open SQL Statements — 5 Statements

There are 5 basic Open SQL statements which will be used regularly in programs from here
forward. These are SELECT, INSERT, UPDATE, MODIFY and DELETE.

e The SELECT statement has, of course, already been used. This statement allows
one to select records from database tables which will then be used in a program.

e INSERT allows new records to be inserted into a database table.

e UPDATE allows records which already exist in the table to be modified.

e MODIFY performs a similar task to update, with slight differences which we will
discuss shortly.

e DELETE, of course, allows records to be deleted from a table.

Whenever any of these statements are used in an ABAP program, it is important to check
whether the action executed has been successful. If one tries to insert a record into a da-
tabase table, and it is not inserted correctly or at all, it is important to know, so that the
appropriate action can be taken in the program. This is done using a system field which
has already been used: SY-SUBRC. When a statement is executed successfully, the SY-
SUBRC field will contain a value of 0, so this can be checked for and, if it appears, one can
continue with the program. If it is not successful, however, this field will contain a differ-
ent value, and depending on the statement, this value can have different meanings. It is
therefore important to know what the different return codes are for the different ABAP
statements, so as to recognise problems and take the correct course of action to solve
them. This may sound difficult, but with practice will become second-nature.

150

MODIFYING DATA IN DATABASE TABLES

Insert Statement

The SELECT statement has already been used, so here it will be skipped for now to focus
on the INSERT statement. In this example then, a new record will be inserted into the
ZEMPLOYEES table. Firstly, type INSERT, followed by the table name, and then a period:

H INSERET zemployees.

Doing this, one must always type the table name, a variable’s name cannot be used in-
stead. Use the check statement (IF) to include an SY-SUBRC check, telling the system to do
if this does not equal 0:

INSERT zemployees.
IF sy-subrc <> 0.
* Do something
ENDIF.

This is the simplest form of the INSERT statement, and not necessarily the one which is
encouraged. Using this form is no longer standard practice, though one may come across
it if working with older ABAP programs.

In the above statement, nothing is specified to be inserted. This is where the concept of
the work area enters. The statement here expects a work area to exist which has been
created when an internal table was declared. This type of work area is often referred to as
a header record:

Hdr f1 f2 fa
recl f1 f2 fa
rec?2 f1 f2 fa
rec3 f1 f2 fa
recd f1 f2 fa

The table above shows the yellow area as a standard table containing four records and
their respective fields, the area above in grey is the header record, which is stored in
memory and is the area which is accessed when the table is referenced from a program
only by its table name. If an INSERT statement is executed, whatever is contained in the
header record will be inserted into the table itself. The header record does not exist in the

151

MODIFYING DATA IN DATABASE TABLES

table, it is just an area stored in memory where a current record can be worked with,
hence the term work area. When someone refers to the table only by its table name, it is
the header record which is referred to, and this can become confusing. One thinks that
one is referencing the table itself, but in fact it is the header record which is being worked
with, a record held in memory with the same structure as the table. ABAP objects, which
are important when one gets to a more advanced stage in ABAP, will not allow a header
record to be referred to, so it is important not to do this. Header records were used com-
monly for this in the past, but as noted previously, this is no longer the way things are
done.

To avoid confusion when working with internal tables should programs must work with
separate work areas, which are perhaps similar in structure to a header record, but not
attached to the table, with a separate name. These are separate structures from the initial
table, which are created in a program.

Hdr f1 f2 f3 Wa
recl f1 f2 f3
rec 2 f1 f2 f3
rec 3 f1 f2 f3
recd f1 f2 f3

To declare a work area the DATA statement is used. Give this the name “wa_employees”.
Now, rather than declaring one data type for this, several fields which make up the table
will be declared. The easiest way to do this is to use the LIKE statement.

So here, the wa_employees work area is declared LIKE the zemployees table, taking on the
same structure without becoming a table itself. This work area will only store one record.
Once this is declared, the INSERT statement can be used to insert the work area and the
record it holds into the table. The code here will read “INSERT zemployees FROM
wa_employees”:

DATA wa_employees LIKE zemployees.

INSERET zemwployees FROM wa_employees.

152

MODIFYING DATA IN DATABASE TABLES

Additionally, using this form of the INSERT statement allows you to specify the table name
using a variable instead. It is important to note here that if one is doing this, the variable
must be surrounded by brackets.

Now, the work area must be filled with some data. Use the field names from the
zemployees table. This can be done by forward navigation, double-clicking the table name
in the code, or by opening a new session and using SE11. The fields of the table can then
be copy & pasted into the ABAP editor and the work area’s fields populated as in the
image below:

DATA wa_enployees LIFE zemployees.

wa_enplovees-employee = '10000006"°.
wa_enployees-surname = 'WESTHORE'.
wa_enployees-forename = 'ERUCE'.
wa_employees-title = "MR',
wa_enployess-dob = '1992Z1213".

INSEET zemployees FROM wa_employees.

The check statement can then be formulated as follows, meaning that if the record is in-
serted correctly, the system will state this, if not then the SY-SUBRC code which will not
equal zero is will be displayed:

IF sy-subrc = 0.

WEITE 'Record Inserted Correctly'.
EL3E.

WRITE: 'We hawe a return code of ', sy-subrc.
ENDIF.

Check the program, save, and activate the code, then test it. The output window will dis-
play:

i
Fecord Inserted Correctly

If you check the records in your table via the ‘Data Browser’ screen in the ABAP dictionary,
a new record will be visible:

153

MODIFYING DATA IN DATABASE TABLES

ooo 10000003 MICHAELS ANDREW HR 01.01.1977
ooo looooood NICHOLS ERERDAN HR 02.12.1958
ooo 10000005 HMILLS ALICE HR5 16.08.2000
ooa 10000006 WESTHORE ERUCE HR. 13.12.1992

For practice use the ABAP debugger to execute the code step-by-step. First, delete the
record from the table in the ABAP dictionary and put a breakpoint in the code at the be-
ginning of the record entry to the work area:

DATA wa_employees LIKE Zemwployees.

va_employees-surname = 'WESTMORE'.
wa_employees-forename = 'BRUCE'.

Now execute the program. The breakpoint will cause program execution to pause at your
breakpoint and the debugger will open:

DATA wa_employees LIKE zemployees.

=5 @ wa_employees-employee = '10000006'.
wa_employees-surname = 'WESTMORE'.
wa_employees-forename = 'BRUCE'.
wa_employees-title = 'MR',
wa_employees-dob = '19921213'.

Firstly, use the Fields mode to view the work area structure. Double click the
wa_employees after the DATA statement and it will appear in the ‘Field names’ box at the
bottom. At this point the work area is completely empty, evidenced by the zeros in the
adjacent box. To display the full structure, double click the wa_employees in the left box:

|_ﬁerId Narnes 1-4 F[ﬂ Field contents
L_M] 00000000 &L:?

154

MODIFYING DATA IN DATABASE TABLES

Structured field :_ |
Length (in bytes) 114 _
M. Component namea T. |Ln... Contents 0
al MANDT C 3
2 ENPLOYEE M & 00000000
=] SURNAME C 40
4 FORENAME C 40
5 TITLE C 15
a] DOB] g 00000000

Then, execute each line of code starting from the breakpoint using the F5 key, the fields
within this structure view are filled one by one:

Structured fisld

Langth (in bytes) 114
M, Component narne T. Ln.. Contents E
MANDT C 3 “
2 EMPLOYEE il g lo0o0ooes
3 SURMNANE C 40 WESTMORE
4 FORENAME i 40 ERIUCE
= TITLE - 15 MR
& OB i B 19821213

Return to the Fields view before executing the INSERT statement, and observe the SY-
SUBRC field at the bottom of the window. It displays a value of 0. If there are any prob-
lems in the execution, this will then change (4 for a warning, 8 for an error). Given that
this code has already been successful, you already know that it will remain 0. Once the
program has been executed in the debugger, refresh the table in the Data Browser screen
again, and the record will be visible.

Clear Statement

At this point, the CLEAR statement will be introduced. In ABAP programs, one will not al-
ways simply see the program start at the top, insert one data record and continue on.

155

MODIFYING DATA IN DATABASE TABLES

Loops and the like will be set up, allowing, for example, many records to be inserted at
once. To do this, variables and structures are re-used repeatedly. The CLEAR statement
allows a field or variable to be cleared out for the insertion of new data in its place, allow-
ing it to be re-used. The CLEAR statement is certainly one which is used commonly in pro-
grams, as it allows existing fields to be used multiple times.

In the previous example, the work area structure was filled with data to create a new re-
cord to be inserted into the zemployees table, then a validation check performed. If one
then wants to insert a new record, the work area code can then be copy & pasted below
this. However, since the work area structure is already full, the CLEAR statement must be
used so that it can then be filled again with the new data.

To do this, the new line of code would read “CLEAR wa_employees.”

If you just wanted to clear specific fields within your structure you just need to specify the
individual fields to be cleared, as in the example below, clear the employee number field.
New data can then be entered into the work area again:

clear wa_employees-employee.

wa_employees-employes = 10000007,
wa_employees-surname = 'WE3ITHORE'.
wa employees-forename = 'BRUCE',
wa_employees-title = 'MR',
wa_employees=dob = '19921213',

Remember that the employee number is a key field for the zemployees table, so as long as
this is unique, duplicate information could be entered into the other fields. If one tries to
enter the same employee number again though, the sy-subrc field will display a warning
with the number 4.

You can see the operation of the CLEAR statement in debug mode. The three images be-
low display the three stages of its operation on the field contents as the code is executed:

156

MODIFYING DATA IN DATABASE TABLES

=5 clear we_enployees-employeé[

wa_emnployees-employee = '10000007'.
wa_employees-surname = 'WESTMORE'.
wa_employees-forename = 'BRUCE'.
wa_emnployees-title = 'MR'.
wva_employees-dob = '19921213'.

1 - 4] i IQ} Field contents
10000006 &2
= (S b,
[[Field names 1 - a|v|q| Figld contents
‘00000000 | 2\
- ——
1 |Field names 1-4 a@| Field contents
110000007 & |2
- —

Update Statement

The UPDATE statement allows one or more existing records in a table to be modified at
the same time. In this example it will just be applied to one, but for more the same princi-
ples generally apply.

Just as with the INSERT statement, a work area is declared, filled with the new data which
is then put into the record as the program is executed.

Delete the record created with the CLEAR statement as before. Here, the record previ-
ously created with the INSERT statement will be updated. Copy & paste the work area and
then alter, the text stored in the SURNAME and FORENAME fields. Then on a new line, the
same structure as for the INSERT statement is used, but this time using UPDATE:
wa_cuployees-enployee = 10000006 .

wa_emnployees-surname = 'EASTHMORE'.

wa_emnployees-forename = 'ANDY'.

wa employees-title = 'HR'.
wa_employees-dob = '19921213'.

UPDATE zemployees FROM wa_enmployees.

157

MODIFYING DATA IN DATABASE TABLES

As this is run line-by-line in debug mode, you can see the Field contents change as it is
executed:

% wa_employees-employee = '10000006°.
wa_eumpleyees-surname = 'EASTMORE'.
wa_employees-forename = 'ANDY'.
wa_employees-title = 'MR',

wa_employees-dob = '15921213'.

UPDATE zemployees FROM wa _employees.

|ﬂf§ﬁeid names 1-4w Iﬂj[Field contents
—F,,,,ff, e e —_—T)
fue_enployees-eaployeel 10000006 R|2|
wa_euployees-surname WESTHORE QI/ 1
wa_employees-forename BRUCE QI/I

1 -4 ﬂﬂ| Field contents

- e o

10000006 gla
Wa_enployess-surnane ELSTHORE & 6?|
wa_employees-forenane ANDY glﬂ

Once the UPDATE statement has been executed you can view the Data Browser in the
ABAP Dictionary to see that the record has been changed successfully:

uuu FRIIEINIIEITE) iLLa ALLLEL o1 8-
‘_ ooo 10000006 EASTHORE ANDT HE.
M
.
Modify Statement

The MODIFY statement could be said to be like a combination of the INSERT and UPDATE
statements. It can be used to either insert a new record or modify an existing one. Gener-
ally, though the INSERT and UPDATE statements are more widely used for these purposes,
since these offer greater clarity. Using the MODIFY statement regularly for these purposes
is generally considered bad practice. However, times will arise where its use is appropri-
ate, for example of one is writing code where a record must be inserted or updated de-
pending on a certain situation.

158

MODIFYING DATA IN DATABASE TABLES

Unsurprisingly, the MODIFY statement follows similar syntax to the previous two state-
ments, modifying the record from the data entered into a work area. When this statement
is executed, the key fields involved will be checked against those in the table. If a record
with these key field values already exists, it will be updated, if not then a new record will
be created.

In the first section of code in the image below, since employee number is the key field,
and 10000006’ already exists, the record for that employee number will be updated with
the new name in the code. A validation check is performed next. The CLEAR statement is
then used so a new entry can be put into the work area, and then employee 10000007 is
added. Since this is a new, unique key field value, a new record will be inserted, and an-
other validation check executed:

wa_enployees-enployee = 'lEII:IEII:IEIIfIIS_:_.
wa_enployess-surnane = 'NORTHMORE) .
wa enployees-forename = 'PETER'.
wa_enployees-title = "MR',
wa_enployees-dob = "19921213",

HODIFY zemployees FROM wa_employees.

IF sy-subrc = 0.

WRITE: / 'Record Modified Correctly'.
ELSE.

WRITE: / 'We have a recturn code of ', sy-subre.
ENDIF.

CLEAR wa_smployess,

wa_enployees-employee = "10000007".
wa_enployees-surname = 'S0UTHMORE".
wa_enployees-forename = '33AN'.
wa_employees-title = 'MRS'.
wa_ewployees-dob = "199Z1113".

MODIFY zemployees FROM wa employees.

IF sy=-subrc = 0.

WEITE: / 'Record Modified Corcectly'.
EL3E.

WRITE: f '"We hawe a return code of ', sy-subtc.
ENDIF.

159

MODIFYING DATA IN DATABASE TABLES

When this is executed, and the data then viewed in the Data Browser, employee number
10000006 will have been updated with the new name, Peter Northmore, and a new re-
cord will have been created for number 10000007, Susan Southmore:

NOETHMORE PETER

aoo 10000007 SOUTHMORE SUSAN

oono J 10D00D0o0s

Delete Statement

The last statement to be looked at in this section is the DELETE statement. One must be
careful using this, because if used incorrectly, there is the possibility of wiping the entire
contents of the table, however, as long as it is used correctly, there should be no problem
of this sort.

Unlike the previous SQL statements, the DELETE statement does not take into account
most fields, only the primary key field. When you want to delete a record from a table, the
system only needs to be told what the primary key field value for that record is.

In this example, the last record created, for the employee Susan Southmore will be de-
leted. For the zemployees table, there are two key fields, the client field and the employee
number. The client field is dealt with automatically by the system, and this never has to be
included in programs, so the important field here is the employee number field. The syn-
tax to delete the last record created in the previous section would be this:

CLEAR wa_employees.
wa_etployees-enployes = ‘10000007,

DELETE zemployees FROM wa_employees.

The FROM addition in the last line ensures only the record referred to by its key field in
the work area will be deleted. Again, a validation check is performed to ensure the record
is deleted successfully. When this is run in debug mode you can see the fields which are
filled with the creation of the record are cleared as the CLEAR statement executes.

After the employee number is filled again the DELETE statement is executed. The code’s
output window will indicate the success of the deletion and the record will no longer ap-
pear in the Browser view of the table:

160

MODIFYING DATA IN DATABASE TABLES

FEEXENEENENENTENENEN
*¥¥y - DELETE
=} @ CLEAR wa_employees.

wa_employees-employee = '10000007°.

DELETE zemployees FEOM wa employees.

E] Field names 1-4 Feld contents
oyess-employee Jcmnnaun?
Wa_employees-surnane SOUTHMOERE
wa_emnplovees-Lorenane . SUSAN
wa_employess-title MR3
._Fnald names 1-4
floe_euplovees—euployee Inunnaunn
wa_empl OYSEs—SUrnane
wa_emplovees-forenane . h

wa_employees-title
wa_employees-employee = '10000007'.
= DELETE zemployees FROM wa employees,

IF sy-subrxc = 0.

WRITE: / 'Record Deleted Correctly'.
ELSE.

WRITE: / 'We have a return code of ', sy-subrc.
ENDIF.

AAEANERREARNEND

[:lFleld names

'.1- enployees-euployee

1 - afw E Field contents

110000007 :
] &2

Record Deleted Correctly

161

MODIFYING DATA IN DATABASE TABLES

oo 10000005 h NILLS ALICE
oo 10000006 HORTHMORE FETER

The record is now gone from the table.

There is another form of the DELETE statement which can be used. You are not just re-
stricted to using the table key to delete records, logic can also be used. So, rather than
using the work area to specify a key field, and using the FROM addition to the DELETE
statement, one can use the WHERE addition to tell the program to delete all records
where a certain field matches a certain value, meaning that if one has several records
which match this value, all of them will be deleted.

The next example will demonstrate this. All records with the surname Brown will be de-
leted. To be able to demonstrate this, create a second record containing a surname of
Brown, save this and view the data:

Chent

Ernpdoyes Mumber 10000010

SUrname Browm

Forename QWERTY

Title MR

= =
Date of Birth LIIIl .01.197 ?J
=
|Employee Number| Surname Forename

10000001 EBROWN STEPHEN
10000002 JONES AMT
10000003 MICHAELS ANDREW
10000004 NICHOLS BRENDAN
10000005 MILL: ALICE
10000006 NORTHMORE PETER
10000010 EROWN QWERTY

The code for the new DELETE statement should then look like this. Note the additional
FROM which must be used in this instance:

162

MODIFYING DATA IN DATABASE TABLES

CLEAR wa_employees.
DELETE FROM zemployvees WHERE surname = 'BROWN'.

IF sy-subrc = 0.

WEITE: / 'Z2 Records Deleted Correccly'.
EL3E.

WRITE: / 'We have a return code of ', sy-subrc.
ENDIF.

When this code is executed, both records containing a Surname of Brown will be deleted.

|]
| Employee Number| Surhame Forename
looooooz JONES LMY
loooooos MICHAELS LNDREY
loooooo4 NICHOLS EREND AN
loooooos MILLS ALICE
100o00oes NORTHMORE FETEFR.

2 Records Deleted Correctly

Note that, if one uses the following piece of code, without specifying the logic addition, all
of the records will in fact be deleted:

DELETE FEOM zemplovees.

163

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Chapter 10 - Program Flow Control and Logical
Expressions

Control Structures

This section will look at program flow control and logical expressions. It could be argued
that this is really the main aspect of ABAP programming, where the real work is done.
How one structures a program using logical expressions will determine the complete flow
of the program and in what sequence actions are taken.

First, a look will be taken at control structures. When a program is created it is broken up
into many tasks and subtasks. One controls how and when the sections of a program are
executed using logical expressions and conditional loops, often referred to as control
structures.

If Statement

Copy you program previous chapter in which to test some of the logic which is to be built.
Here | copy the program Z_OPENSQL 1toZ LOGIC_1:

[Copy Program Z_CPENSQL_1

Source program Z_OPENSQL_L
| Target program Z_LOGIC_1

[Ty @

Remove all of the code from the program, leaving only the first example INSERT statement

and its validation test.

When one talks of control structures, this refers to large amounts of code which allows
one to make decisions, resulting in a number of different outcomes based on the decisions
taken. Take a look at the IF statement to explain the basic logic at work here.

164

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The IF statement is probably the most common control structure, found in just about
every programming language. The syntax may vary between languages, but its use is just
about universal:

IF ay=subrc = 0.

WRITE 'Record Inserted Correctly'.
EL3E.

WRITE: 'We hawe a return code of ', sy-subrc.
ENDIF.

This IF statement tells the program that IF (a logical expression), do something. The ELSE
addition means that should this logical expression not occur, do something else. Then the
statement is ended with the ENDIF statement.

The IF and ENDIF statements belong together, and every control structure created will
take a similar form, with a start and an end. Control structures can be very large, and may
contain other, smaller control structures within them, having the system perform tasks
within the framework of a larger task. The code between the start and end of a control
structure defines the subtasks within it. Tasks can be repeated, in what are called loops.

From here on, control structures will be used to control the flow, create tasks, subtasks
and branches within a program, and to perform loops.

Comment out all of the preceding code, and click the ‘Pattern’ button, in the toolbar by
Pretty Printer. A window will appear, and just select the ‘Other pattern’ field, and type
“IF”. The structure of an IF statement will then appear in the code, which can be followed
as a guide:

165

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

[EIrs, statement

(CICALL FUNCTION
AABAP Ohjects patterns
T MESSAGE bl Cat E|Number |
(JSELECT * FROM
PERFCRM
O AUTHCORITY-CHECK,
CIWRITE
_ICASE for status
_Structured data object
= with fields from structure
“with TYPE for struct
CALL DIALOG

(o1 Other pattern
= S —
I8 =]

L

g

IF £1 0OF f£2.

Create a DATA statement, 15 characters of type ‘c’, and name this “surname”. Then on a
new line give this the value ‘SMITH’. Then edit the auto-generated IF statement so that it
looks like this.

166

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

DATA: surname(15) TYPE c.

surname = "SHNITH'.

IF surhame = 'SHITH'.
WRITE 'Youwe won a car!'.

*ELSEIF £3 0P £4.

The IF statement here takes the form that if the value of “surname” is ‘SMITH’, text will be
displayed stating “Youve won a car!” (note that an apostrophe cannot be placed correctly
in You’ve without making the code invalid). Then execute the code. The result should be:

Youye won & car!

Next, this will be extended to include the ELSEIF statement which has been commented
out above. Change the value of “surname” to ‘BROWN’. Then, add to the ELSEIF statement
so that if the value of “surname” is ‘BROWN’, the output text will read “Youve won a
boat!”:

DATA: surhame(l5) TYPE c.
aurname = 'BROWN'.

IF surname = '3MITH'.
WRITE 'Vouwve won a car!',
ELSEIF surname = "EROUN'..
WRITE 'Youwe won a boat!'.
*ELSEIF fn OP fm.

Youwre won a boat!

In this example, the first IF statement was not true, as the surname was not Smith. Hence
this branch was not executed. The ELSEIF statement was true, so the text output assigned

167

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

here appeared. The ELSEIF statement can be added to an IF statement any number of

times, to designate the action taken in a number of situations:

WEITE 'Youwe
ELSEIF surname
WEITE 'Youwve
EL3EIF surname
WRITE 'Youwve
ELSEIF surname

IF surname = 'SMITH'.

won a car!'.
= "BROWN'.

won a boatc!',
= "JOMNES'..
won a PLANE!'',

WEITE

= "ANDREWS'.
'"Youve won a HOUSE!',

Depending on what the value of ‘surname’ is at any given time, a different branch will be

executed.

There is also the ELSE statement. This is used for the last piece of the IF block, and is used
if none of the values in the IF and ELSEIF statement are matched. The full block of code is

shown below:

DATA: surname(l5) TYPE c.

surname = "EROWN'.

IF surname = 'SMITH'.

WRITE 'Youwe
ELSEIF surname

WRITE 'Youwe
EL3EIF surname

WRITE 'Youwe
ELSEIF surname

WRITE 'Youwe
ELSE.

won a car''.

= "BROWN'.

won a boat!',

= "JONES'..

won a PLANE!',
= "ANDEREWS'.
Won & HEIT.TEE".I

WRITE 'Unlucky! You go home empty handed'.

ENDIF.|

With this block as it is now, there will always be an output, regardless of the value of ‘sur-

name’, every possibility is now taken care of. The value will either match one of the first

four, or the ELSE statement’s text will be displayed. The IF statement is very important for

determining the flow of a program and will be used on a regular basis.

168

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Linking Logical Expressions Together

There are a whole set of ABAP operators which can be used with logic statements. With
the IF statement so far the equals (=) operator has been used. The following can also be
used here:

ABAFP the operators:
Sy d, £ g = =

(from left to right: equal to, NOT equal to, less than, greater than, less than OR equal to,
greater than OR equal to. These can also be written with their text equivalents, in order:
EQ, NE, LT, GT, LE, GE. The text versions are not commonly used.)

Logical expressions can be linked with the operators OR, AND and NOT. For example, one
could add to the previous IF statement:

IF surname = '3MITH' AND forename = "JOHN'.
WRITE 'Youwe won a car!',
ENDIF.

OR and NOT operate can also be used in exactly the same way

Nested If Statements

Nested IF statements allow one to include IF statements inside other IF statements, for
example:

IF surnhame = 'SHMITH'.
IF forename = 'JOHN'.
WRITE "Youwe won a car!',
ELZE.
WRITE ‘'Oooo, 20 close'.
ENDIF.
ENDIF.

Here, the first IF statement will discount records where the Surname field value does not
equal ‘SMITH’. For all records with a Surname = ‘SMITH’, the second IF statement checks
to see if the record being processed has a Forename = ‘JOHN’. If it does the message
“Youve won a car!” will be output to the screen. If not, a consolatory message will be out-
put instead.

169

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

You are not limited to just one nested IF statement. Nesting can continue down as many
levels / branches as is required by the program being written, for example:

IF surname = 'SMITH'.
IF forename = 'JOHN'. I
IF location = 'UKE'.
WRITE "Youve won a car!',
EL3E.
WRITE "Oooo, so close'.
ENDIF.
ENDIF.
ENDIF.

Also, you do not simply have to nest statements one after another, but can put any other
statements you need between, as long as the control structures are terminated correctly
with, in this case, the ENDIF statement.

Case Statement

When logical expressions are created, and linked together, it is always important to make
the code as readable as possible. Generating many logical expressions on one line can of-
ten be confusing. While the code will still work without problemes, it is preferable to struc-
ture your code across multiple lines and make use of other control structures if possible.

This is where the CASE statement can help. This does similar work to the IF statement but
with the flexibility to make the code much more readable, but is at the same time limited
to one logical expression. Here is an example code block for the CASE statement:

CASE surname.
WHEN "SMITH'.
WRITE 'Youve won a car!',
WHEN 'JONES'.
TRITE 'Youwve won a PLANE!".
WHEN 'GREEN'.
WRITE 'Vouwe won a BOAT''.
WHEN OTHERS.
WRITE 'Unlucky'.
ENDCASE.

Like the IF statement, here the contents of the surname field are searched by the CASE
statement, checking its contents and performing an action. The WHEN addition is used to
check the field for different values, and WHEN OTHERS accounts for all values which are

170

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

not specified elsewhere. The ENDCASE statement closes this control structure. This is in
many ways much easier to read than a large amount of nested IFs and ELSEIFs.

You also have the facility to nest multiple CASE statements.

CASE surname.
| WHEW 'SMITH'.
WRITE 'Youve won & car'',
CASE forename.
WHEN 'BARRY'.
WRITE: 'Hi Barry'.
WHEN 'Paul'.
WRITE 'Hi Paul'.
WHEN other.
WRITE 'Who are you?'
endcase,
WHEN 'JORES'.
WRITE 'Youve won a PLANE!''.
WHEN 'GREEN'.
WRITE 'Youve won a BOAT!'.
WHEN OTHERS.
WRITE 'Unlucky'.
ENDCASE.

Select Loops

This next section will discuss iteration statements, otherwise known as looping state-
ments. These are used to execute a block of ABAP code multiple times.

Create another new program and call it Z_ITERATIONS_1.

There are various ways to loop through blocks of code in an ABAP program, and these can
be separated into those which have conditions attached and those which do not. The
SELECT statement is a form of loop which has already been used. This statement allows
you to iterate through a record set.

TAELES: zemployees.
SELECT * FROM zemployees.

WRITE: / zemployees.
ENDSELECT.

The asterisk (*) tells the program to select everything from the zemployees table, and this
is followed by a WRITE statement to write the table to the output screen. The SELECT loop

171

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

closed with ENDSELECT, at which point the loop returns to the start, writing each record in
turn until there are no more records to process in the table.

This last example had no conditions attached. To add a condition is quite simple:

TAELES: zemployees.

SELECT * FROM zemployees WHERE surname = 'MILLS'.
WRITE: / =zemployees.
ENDSELECT.

Here, only records where the surname is Mills will be selected and written to the output
screen:

-
00010000005SKILLS ALICE MRS 20000816

Do Loops

The DO loop is a simple statement, here declare DO. Add a WRITE statement, and then
ENDDO:

Do,
WRITE: 'Hello'.
ENDDO.

You will notice there is nothing to tell the loop to end. If one tries to execute the code, the
program will get stuck in a continuous loop endlessly writing out ‘Hello’ to the output
screen. The transaction must be stopped and the code amended. A mechanism must be
added to the DO loop to tell it when to stop processing the code inside it. Here, the TIMES
addition is used. Amend the code as follows so that the system knows the loop is to be
processed 15 times. Also here a ‘new line’ has been added before ‘Hello’:

DO 15 TIMES.
WRITE: / 'Hello'.
ENDDO.

172

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

The DO statement is useful for repeating a particular task a specific number of times. Just
remember to always include the TIMES addition.

Now try some processing with the DO loop. Create a DATA variable named ‘a’, of type in-
teger, and set the value of this to 0. Then, inside the DO loop, include the simple calcula-
tion“a=a+1".

DATA: a TYPE i.
a = (.

DO 15 TIMES.
A= B84],
WRITE: a.

ENDDO,

The system also contains its own internal counter for how many times a DO loop is exe-
cuted, which can be seen when this is executed in debug mode. Set a breakpoint on the
DO line, then execute the code, keeping an eye on the ‘@’ field in the Field names section,
and also includes ‘sy-index’ in one of these fields. You will see that ‘a’ keeps a running
count of how many times the DO loop executes as well as the system variable sy-index.
The values will be the same for both, going up by 1 each time the loop completes. The sy-
index variable will in fact update a line of code before the ‘a’ variable, as it counts the DO
loops, and the ‘a’ refers to the calculation on the next line of code:

173

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

€ Do 15 TIMES.

= h a=a+ l.
WEITE: a.
ENDDD.

EFiEId names 1-4 |E@ Feld contents S
&2
&7

a

Fy-index : E

[

€ Do 15 TIMES.

a=a+ l.

= WRITE: a.
ENDDO.

EFiEId names L :r - |E@ Feld contents S
I._E | z |%|.¢?

sy-index 2 |§|E

Note that here the blue arrow cursor has moved down a line in the second image, execut-
ing the next line of code. If one adds a new line to the WRITE statement in the initial code,
the output window will appear like this:

174

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

J O Ln s L B e

10
11
12
13
14
15

Nested Do Loops

DO loops can also be nested. If this is done, each nested loop will have its own sy-index
created and monitored by the system. Be aware that when nesting many loops, it is im-
portant to consider how much work the system is being asked to do.

Add to the WRITE statement from the previous section a small amount of text reading
‘Outer Loop cycle:’ before outputting the value of ‘a’. This will allow ‘a’ to be monitored.

Then, under the WRITE statement, add a new DO statement to create the inner loop cycle,
as below, as well as adding the extra data variables. The main loop will execute 15 times,
but within each of these loops, the nested loop will execute 10 times. The variable named
‘c” will count how many times the loop has occurred. Around 150 loops will execute here.

While the SAP system will certainly be able to handle this instantly, you should bear in
mind that if this number was significantly larger and included more intensive processing
than simple counting, this could take much longer:

175

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

DATA: a TYPE i,
b TYPE 1,
o TYPE i.

0.
0.

a
c

o 15 TIMES.
a=a+ 1.
WRITE: / 'Outer Loop cycle: ', a.
h = 0.
DD 10 TIMES.
b=5hb+ 1.
WRITE: / 'Imner Loop cycle: ', b.
ENDDO.
c =c+ b.
ENL'DO.
¢ =02+ a. B
WRITE: f 'Total Iterations: ', C. _

Set a breakpoint and execute this code in debug mode, keeping an eye on the values of a,

b, c and sy-index in the Fields mode. As the DO loop is entered, the sy-index field will be-

gin counting. Here, the inner loop has just occurred for the 10™ time, noted by the 10 in

sy-index (and indeed the value of ‘b’).

DO 15 TIMES.
a=a+ 1.
WRITE: / "Outer Loop cycle: ', a.
b = 0.
=) DO 10 TIMES.
b="5b+1.
WRITE: / 'Irmer Loop cycle: ', b.
ENDDO.
c=c+h.
ENDLO.
C=C+a,

WRITE: / 'Total Iterations: ', c.

EField names 1 _—li: E Fiald contents
L 1 . &2
b 10 &g
[0 |@a 7
sy-index 10 i

176

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Then the full loop has completed once, the sy-index field displays 1 and the ‘c’ field has
been filled in:

= DO 15 TIMES.
a=na+ 1.
WRITE: / 'Outer Loop cycle: ', a.
b = 0.
D0 10 TIMES.
b=5b+ 1.
WRITE: F 'Imner Loop cycle: ', b.
ENDDO.
c=c+bh.
ENDDO.
C = C + A

WRITE: / 'Total Iterartionsz: ', c.

EJFiEhj names 1 -4 t]g Field contents
L | Q7
b 10 %
c 10 & |2
sy-index 1 £

After the second full loop, sy-index and ‘a’ will display 2, ‘b’ will be 10 again (as its value is
reset to 0 at the beginning of each loop) and ‘c’ will display 20 representing the number of
calculations completed all together:

Eﬁeld names 1 -4 :lﬁ QFI’EII:I contents
l._E I 2

=t a’ é?
b 10 @ &
c 20 &2
sy-index 2 £

After the full 15 outer loops are completed, it will look like this:

177

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

EFiEhﬂ names 1 -4 E@ Field contents -
g — Q72
b 10 | gE
c 150 &7
sy-index 15 |Q) i

The value of ‘a’ is then added to ‘c’ to give the total number of both outer and inner loops
completed:

= 165 |§E

When the results are viewed in the output window, the last full loop will look like this:

Outer Loop cycle: 1
Inmer Loop cycle:
Inmer Loop cycle:
Inner Loop cycle:
Inner Loop cycle:
Inner Loop cycle:
Inner Loop cycle:
Inner Loop cycle:

o O O B W N =y

Innexr Loop cycle: 8
Inner Loop cycle: 9
Inner Loop cycle: 10
Total Iterations: 165

While Loops

The next looping statement to be examined is the WHILE loop. This differs from the DO
loop in that it checks for a predefined condition within the loop before executing any
code. All the code between the WHILE and ENDWHILE statements will be repeated as long
as the conditions are met. As soon as the condition is false the loop terminates. Here,
again the sy-index field can be monitored to see how many times the loop has executed.

WHILE a <> 15.
WRITE: / 'Loop cycle: ', a.
a=a+ 1.

ENDWHILE.

178

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

So here, the loop will again cause the value of ‘a’ to take the form of incremental count-
ing, and each time the loop is executed the value of ‘@’ will be written. The loop will con-
tinue as long as the value of ‘a’ is not equal to 15, and once it is, it will stop:

Loop cycle:
Loop cycle:
Loop cycle:

W N =O

Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:
Loop cycle:

D~ 0 b

(el
W N~ OW

ol o
NS

If one runs this in the debugger mode one will see that on the 15" loop, when the value of
‘a’ is 15, the code inside the statement is skipped over and the cursor jumps straight from
WHILE to ENDWHILE.

Nested While Loops

Just as with DO loops, WHILE loops can be nested. The process is exactly the same for
both. Below is an example of nested WHILE loop statements.

WHILE a <> 15.
a=a+ 1.
WEITE: / 'Outer Loop cycle: ', a.
b = 0.
WHILE b <> 10.
b=5b+ 1.
TMRITE: / 'Inner Loop cycle: ', b.
ENDWHILE.
c =c¢c + b.
ENDWHILE.
C=0C+ &
WRITE: / 'Total Iteratioms: ', cC.

The output for this code would appear exactly the same as our nested DO loop example.
The values of ‘b’ have also been indented slightly here for ease of reading:

179

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Outer Loop cycle: 15
Irmer Loop cycle: 1

™~

Inner Loop cycle:
Inner Loop cycle: 3
Inner Loop cycle:

“n

Inner Loop cycle:

o

Inner Loop cycle:

~J

Inner Loop cycle:
Inner Loop cycle:
Inner Loop cycle:
Inner Loop cycle: 10
Total Iterations: 165

0 @

Loop Termination — CONTINUE

Up until now, the loop statements set up have been allowed to use the conditions inside
them to determine when they are terminated. ABAP also includes termination statements
which allow loops to be ended prematurely. There are two categories of these, those
which apply to the loop and those which apply to the entire processing block in which the
loop occurs.

First, we will looks at how to terminate the processing of a loop. The first statement of
importance here is the CONTINUE statement. This allows a loop pass to be terminated
unconditionally. As the syntax shows, there are no conditions attached to the statement
itself. It tells the program to end processing of the statements in the loop at the point
where it appears and go back to the beginning of the loop again. If it is included within a
loop, any statements after it will not be executed.

For the simple DO loop ,include an IF statement which includes CONTINUE inside it, like
this:

DO 15 TIMES.
a=a+ l.
IF sy-index = Z.
CONTINUE.
ENDIF.
WRITE: / 'Outer Loop cycle: ', a.
ENDDO.

180

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

With this code, the second iteration of the loop (when the sy-index field, like the value of
a, will read 2) will hit the CONTINUE statement and go back to the top, missing the WRITE
statement. When this is output, the incremental counting will go from 1 to 3. As with
many of these statements, in debug mode, the operation can be observed more closely by
executing the code line by line.

Outer Loop cycle: 1

Quter Loop cycle: 3
Outer Loop cycle: '
Quter Loop cycle: S
Juter Loop cycle: 6
Quter Loop cycle: 7
Outer Loop cycle: 8
Quter Loop cycle: 9
Juter Loop cycle: 10
Outer Loop cycle: 11
Outer Loop cycle: 12
Quter Loop cycle: 13
Outer Loop cycle: 14
Quter Loop cycle: 15

Loop Termination — CHECK

The CHECK statement works similarly to the CONTINUE statement, but this time allows
you to check specific conditions. When the logic of a CHECK statement is defined, if the
condition is not met, any remaining statements in the block will not be executed and
processing will return to the top of the loop. It can be thought of as a combination of the
IF and CONTINUE statements. To use the CHECK statement to achieve the same ends as in
the example above, the syntax would look like this:

DO 15 TIMES.

a=a+ 1.

CHECE sy-index <> Z.

WRITE: / 'Outer Loop cycle: ', a.
ENDDO.

The program will check that the sy-index field does not contain a value equal to 2, and
where it does not, will continue executing the code. When it does contain 2, the condition
attached will not be true and the CHECK statement will cause the loop to start again, miss-
ing the WRITE statement. This can be executed in debug mode to closely observe how it
works. The output window, once this is complete, will again appear like this:

181

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Outer Loop cycle:

1
Outer Loop cycle: 3
Outer Loop cycle: 4
Quter Loop cycle: 5
Outer Loop cycle: 6
Outer Loop cycle: 7
Quter Loop cycle: 8
OQuter Loop cycle: 9
Outer Loop cycle: 10
Outer Loop cycle: 11
Outer Loop cycle: 12
Outer Loop cycle: 13
Outer Loop cycle: 14
Quter Loop cycle: 15

When you are looking at programs created by other people, do not be surprised to see the
CHECK statement used outside loops. It is not only used to terminate a loop pass, but can
check, and terminate other processing blocks at any point if its particular conditions are
not met. You must be aware of where the CHECK statement is being used, as putting it in
the wrong place can even cause the entire program to terminate. For example here, the
statement will only allow processing to continue if the value of ‘a’ is equal to 1. Since the
value of ‘@’ equals 0, it will always terminate the program before the DO loop is reached:

0.
0. I

checkla = 1.

a
c

Do 15 TIMES.

a = a4],

CHECE say-index <> Z.

WRITE: f 'ODuter Loop cycle: ', a.
ENDDO.

Loop Termination — EXIT

The EXIT statement can also be used to terminate loops. This again allows the loop to be
terminated immediately without conditions. Unlike the CONTINUE statement though, it
does not then return to the beginning of a loop but, terminates the loop entirely once it is
reached. The program will then continue process the code immediately following the end
statement of the loop.

182

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

If the exit statement is used within a nested loop, it will only be that nested loop which is
terminated and the statement following the end of the nested loop will execute next in
the higher level loop. Additionally it can, like the CHECK statement, be used outside loops,
though again one must be careful doing this.

In the next example, regardless of the number of times the DO statement is told to be
executed, on the third loop when the sy-index field contains the number 3, the loop will
be terminated and the statement after ENDDO will be executed, writing “Filler” to the
output screen.

DO 15 TIMES.

a=a+ L.

IF sy-index = 3.

EXIT.

ENDIF.

WRITE: / 'Outer Loop cycle: ', a,
ENDDO.
WRITE: f 'Filler'. I
WRITE: / 'Filler'.

Outer Loop cycle: 1
Outer Loop cycle:
Filler
Filler

{58

183

SELECTION SCREENS

Chapter 11 - Selection Screens

Events

For selection screens to be built and used in a program, the first things to understand are
events. Events are processing blocks, sections of code specific to the selection screens.
The structure of an event starts with the event keyword, but does not have an ending
keyword. The end of the event block of code is implicit, because the beginning of the next
event will terminate the first, or the code itself will end.

When executable programs are run, they are controlled by a predefined process in the
runtime environment, and a series of processes are called one after another. These proc-
esses trigger events, for which event blocks can be defined within the program. When a
program starts, certain events work in a certain order.

Presentation Selection

-
Server Screen
\. ik

7

Runtime Initialization Reporting Processor
Environment Selection :
List

) Screen
7~ Processar
Processor

Flow
Logic . / \ /
. Wy
q Event Block Event Block Event Block Event Block Event Block
Declaration part
for Global data
* INITIALIZATION * AT SELECTION * START-OF- * END-OF- * AT LINE-
SCREEN SELECTION SELECTION SELECTION
ABAP
\ Program)

At the top level is the SAP Presentation Server (Usually the SAP GUI), seen by the end user,
with its selection screen and list output. When a program starts, from the left, with the
declaration of global variables, the system will check to see if any processing blocks are
included and will follow the sequence of events detailed above to execute these.

184

SELECTION SCREENS

The initialization event block of code will only be run once, and will include things like the
setting up of initial values for fields in the selection screen. It will then check whether a
selection screen is included in the program. If at least one input field is present, control
will be passed to the selection screen processor.

This will display the screen to the user, and it can then be interacted with. Once this is
complete, the ‘at selection screen’ event block will process the information, and this is
where one can write code to check the entries which have been made. If incorrect values
have been entered, the code can catch these and can force the selection screen to be dis-
played again until correct values are entered. Error messages can be included so that the
user then knows where corrections must be made.

The ‘start of selection’ event block then takes control once the selection screen is filled
correctly. This can contain code for, for example, setting up the values of internal tables or
fields. There are other event blocks, which are visible in the diagram and there could be a
number of others. The ones discussed here though, tend to be the main ones which would
be used when working with selection screens to capture user input, which will then be
used to process the rest of the program.

Once all of these event blocks have been processed, control is handed to the list proces-
sor, which will output the report to the screen for the user to see. The list screen occa-
sionally can be interactive itself, and the code in the event block ‘at line selection’ visible
in the diagram takes responsibility for this.

This chapter will focus on creating the selection screen and making sure the user enters
the correct values for the report, as well as ensuring the selection screen has a good inter-
face.

Intro to Selection Screens

ABAP reports have 2 types of screens, selection screens and list output screens. The out-
put window has already been used to produce list output screens. Selection screens are
very commonly used. Indeed, when entering the ABAP editor, you are using a type of se-
lection screen:

185

SELECTION SCREENS

IF Tt
Program |Z_SCREENS_1 /=] | 0 Create

Subohjects
#Source code
‘arlants
Attributes
Docurmentation
Text elements

o Display | [cChange |

We will focus on reproduced this type of screen for use by our programs. These will allow
the user to select data which will be used as parameters in the program. When one cre-
ates a selection screen, in fact a dialogue screen is being created, but one does not have
to write the dynpro code oneself. Only specific statements need to be used, and the sys-
tem will take care of the screen flow logic itself.

List screens and selection screens are both dialogue programs. Every one of these has at
least one dynpro which is held in what is called a module pool. A dynpro report program
called ‘standard selection screen’ is called and controlled automatically by the runtime
environment while the program is executed. The dynpro number itself is 1000. The user
will only see the screen when the programmer includes the parameters in their program
using specific ABAP statements. It is these ABAP statements which cause the screen to be
generated and displayed to the user. This means it is easy for the programmer to start
writing their own programs without having to think about code to control the screen.

Creating Selection Screens
Create a brand new program in the ABAP editor, called Z_ SCREENS 1.

First, the initialization event will be looked at. This is the first thing to be triggered in a
program. In this example, imagine one wanted to know the last employee number which
was used to create a record in the zemployees table. The initialization event is the correct
place for this type of code, so that this information can then be displayed on the selection
screen, alerting the user that values greater than this should not be entered as they will
not return results.

186

SELECTION SCREENS

Begin by declaring the TABLES statement for zemployees. Then declare a DATA statement
to hold the value of the last employee number that has been used in the table. This can be
done with a work area declared LIKE the employee number field of the table.

Type “INITITIALIZATION.”, to begin the event block, followed by a SELECT statement
where all records from zemployees are selected, and the work area is populated with the
employee number field:

REPORT =z_screens_1

TABLES: zemployees.

DATA: wa_employee LIKE zemployees-employes,
INITIALIZATION.

SELECT * FROM =zemployees.
wa_employee = Zemployees-enployee.
ENDSELECT.

Then add a WRITE statement for the work area to output to the screen after the loop.
Note that as the SELECT statement is a loop and does not contain a WRITE statement in-
side it, the WRITE statement at the end only writes the final employee number which
populates wa_employee, the last one which was used.

10000008

At Selection Screen

The “at selection screen” event is the next event block in the process. This will always be
executed, if present, before the report can be processed. This, then, would be the ideal
place to check the value which has been entered by the user as a new employee number.
The entry screen will be looked at later, but here some code will be written which will al-
low some kind of error message to be shown if an incorrect value is entered, telling the
user to correct their entry.

The PARAMETERS statement will be used, though will not be gone in detail until later. This
statement, allows you to declare a parameter input box which will appear on the screen.
This works similarly to a DATA statement - “PARAMETERS: my _ee LIKE zemployees-

187

SELECTION SCREENS

employee.”, declaring the parameter as having the same properties as the employee
number field.

Then declare the AT SELECTION-SCREEN event. This is declared with the addition ON, and
my_ee added. This specifies that the 'at selection screen' block refers specifically to this
parameter.

After this, an IF statement can be written, displaying an error message if the parameter
value my_ee entered by the user is greater than the value held in wa_employee, the last
employee number used:

TABELES: zemployees.

DATA: wa_employee LIFKE zenployees-employee.
PARAMETERS: my ee LIKE zeuployees-employes.
INITIALIZATTION.

SELECT * FROM =zemployees.
wa_enployee = zemployees-smployes,
ENDSELECT.

AT SELECTION-3CEEEN ON ny ee.
* Check to make sure the :np]ﬁvnn number is not greater than the
* last euployee rmumber in our table.
IF my_ee > wa_employee.
* DISPLAY & MESSAGE.
ENDIF.

As mentioned earlier, there is no need to terminate event blocks, as they are terminated
automatically when a new one begins. Hence, the INITIALIZATION block ends as soon as
the AT SELECTION-SCREEN block begins.

Parameters

Now, the PARAMETERS statement will be looked at in greater detail. Having defined the
my_ee variable using this statement, the system will now automatically know that a selec-
tion screen is going to be generated. This statement is all that is necessary to display a
field in a selection screen. If you display just the PARAMETERS variable on the screen, it
will appear like this:

188

SELECTION SCREENS

Selection Screen Example

@

MY _EE

The syntax for PARAMETERS is very similar to the DATA statement. A name is given to the
variable, a type can be given or the LIKE statement can be used to give the same proper-
ties as another field already declared. An example appears below, followed by the output
screen when this is executed:

PARAMETERS: my_ee LIEE zemployees-employee,
ny DOB like zewmployees-dob,
ny numhr type i.

MY _EE
MY _DOE
MY _NUMER

The DOB parameter takes on the same attributes as the DOB field in the table, to the ex-
tent that it will even offer a drop-down box to select a date. The my_numbr parameter is
not related to another field as has been declared as an integer type parameter. Addition-
ally, note that parameter names are limited to 8 characters. Also, just like the DATA
statement, a parameter can hold any data type, with the one exception, floating point
numbers. You will notice also that the parameters in the output are automatically given
text labels. The name of the parameter from the program, converted to upper case is used
by default.

Now, some additions to the PARAMETERS statement will be examined.

DEFAULT

If you add this to the end of the statement follow by a value, the value will appear in the
input box on the output screen giving a default value that the user can change if they
wish.

PARAMETERS: wy ee LIFE zemployees-employes DEFAULT '123456785°.

189

SELECTION SCREENS

MY _EE

OBLIGATORY

To make the field mandatory for the user, the addition OBLIGATORY is used. A small tick-
box will then appear in the field when empty, to indicate that a value must be inserted
here. If one tries to enter the report with this empty, the status bar will display a message
telling the user an entry must appear in this field:

PARAMETERS: wy_ee LIKE zemployees-smployes
DEFAULT '12345675° OBLIGATORY.

MY _EE &

) make an entry in all required fields

Automatic Generation of Drop-Down fields

For the next parameter, the zemployees2 table will be used. This must be added to the
TABLES statement at the top of the program. A new parameter, named my_g here is set
up for gender:

TAELES: zemployees, ZEMFLOYEESZ.
DATA: wa_employee LIEKE zenployees-smployes.
PARAMETERS: my ee LIEE =zemployees-smployee

DEFAULT '12345675" OBLIGATORY,
ny g like ZEMPLOYEESZ-gender.

Since a number of values allowed to be entered for the gender field have been suggested
in the table itself, a drop down box will appear by the parameter in the output window.
Here one can see the ABAP dictionary working in tandem with the program to ensure that
values entered into parameters correspond with values which have been set for the field
in the table:

M‘I"_EE 12345678
=t
MY G | '

190

SELECTION SCREENS

[EGender (2) 3 Entries found

:H:D[:- -]

| Gen... Gen

M) Male [h
F Female

U Unknown

If one manually types an illegitimate entry into the gender box, an error message will not
appear. Here, the VALUE CHECK addition is useful, as it will check any entry against the
valid value list which is created in the ABAP dictionary. Now if one tries to enter an invalid

value for the field, an error message is shown in the status bar:

FARAMETERS: my_ee LIFKE =zemployees-esuployee
DEFAULT '12345675" O0BLIGATORY,

wy o like ZEHPLOYEESZ-gender WALUE CHECE.

i Enter a valid value
(After this example, the zemployees2 table and gender parameter can be removed.)

LOWER CASE
By default parameter names are converted to upper case, to get around this one must use

the LOWER CASE addition. Create a new parameter named my_surn and make it LIKE
zemployees-surname field. Give this a default value of ‘BLOGS’ and then add the LOWER
CASE addition. When this is output, BLOGS still appears in upper case, but lower case let-
ters can be added to the end of it. If these were entered without the LOWER CASE addi-

tion, they would automatically convert to upper case:

PARAMETERS: wy_ee LIEE =zemployees-employes
DEFAULT '1234567&8" OBLIGATORY,

ny surn like zemployees-surname default 'BLOGI' LOWER CASE.

My_EE 12345678
|
MY _SLIRM LEI_CIGSIIEIIE |

191

SELECTION SCREENS

There are other additions which can be included with parameters, but these are generally
the most common ones. To look at others, one can simply select the PARAMETERS state-
ment, and press F1 for the ABAP help screen, which will explain further additions which
can be used.

Check Boxes and Radio Button Parameters

Check boxes and radio buttons can both be used to simplify the task of data entry for the
end user. These are both forms of parameters.

A check box must always be of the character type ‘c’ with a length of 1. The contents
stored in this parameter will either be an ‘x’, when it is checked, or empty when it is blank.

Define a new parameter called my_box1. Since this is type c, the type does not have to be
declared. The field name is then followed by “as checkbox”. Note that the output differs
slightly from other parameters by seeing the box on the left and the text to its right:

PARAMETEES: wy_ee LIEE zemployees-esmployes
DEFAULT '12345678° OBLIGATORY,
wy_hoxl az checkhox.

MY _EE
MY_BOX1

Radio buttons are another common method for controlling the values stored in fields. A
normal parameter field allows any value to be entered, while a check box limits the values
to 2. Radio buttons, however, give a group of values which the user must choose one op-
tion from. Again, these are of data type c with 1 character.

To create a group of 3 radio buttons, 3 parameter fields must be set up. Each radio button
must be given a name, in this example to select between colours (don’t forget, parameter
names are limited to 8 characters), followed by “radiobutton”. These are then linked to-
gether by adding the word “group”, followed by a name for the group, here “grp1”. This
can be seen in the image below:

192

SELECTION SCREENS

PARAMETERS: my ee LIKE zemployees-euployee
DEFAULT '12345678' OBLIGATORY,
ny _boxl as checkbox,
wa_green radiobutton group grpl,
wva_blue radicbutton group grpl,

va_red radiobutton group grpl.
Wia_GREEMN L
WA BLUE]
WaA_RED

Select-Options

Next we will take a look at SELECT-OPTIONS. Parameters are useful for allowing the user
to select individual values.. However, when multiple values are required, rather than set-
ting up many different parameters, the select-options statement can be used.

The first thing to consider here is that internal tables will be used to store the values en-
tered by the user. A detailed discussion regarding internal tables will be returned to, but
for now, only what is necessary for select options will be looked at.

When a user wants to enter multiple individual values, or select a value range, these must
be stored in a table in memory which the program can use. The internal tables to be used
here are, similarly to parameters, limited to 8 characters and contain 4 fields which are
defined when the statement is created. These fields are “sign”, “option”, “low” and
“high”. The image below demonstrates the structure of this table:

TAELE
SIGN
OFTION
LOwW
HIGH

When a user makes a choice, filling in a selection field on the screen, whether this is a sin-
gle value or a range of values, a record is generated and put into this internal table. This
table allows the user to enter as many records as they wish, which can then be used to
filter the data.

193

SELECTION SCREENS

The “sign” field has a data type of ¢, and a length of 1. The data stored in this field deter-
mines, for each record, whether it is to be included or excluded from the result set that
the final report selects from. The possible values to be held in this field are ‘I’ and ‘E’, for
‘inclusive’ and ‘exclusive’.

The “option” field also has a type of c, but this time a length of 2. This field holds the se-
lection operator, such as EQ, NE, GT, LT, GE, LE (in order, as discussed previously: equal to,
not equal to, greater than, less than, greater than or equal to, less than or equal to), as
well as CP and NP. If a wild card statement is included here (such as * or +), the system will
default this to CP.

The “low” field holds the lower limit for a range of values a user can enter, while the
“high” field is the upper limit. The type and length of these will be the same as those for
the database table to which the selection criteria are linked.

The reason for using select-options is that parameters only allow for one individual spe-
cific value to be used. If for example, one is using parameters to select from the DOB field
in the zemployees table, these are very specific and so are likely to return, at best, one
result, requiring the user to know the exact date of birth for every employee. The select-
options statement allows one to set value ranges, wild cards and so on so that any selec-
tion within that will return results.

First, type the statement SELECT-OPTIONS and then give a name to the field to be filled,
for example my_dob. To declare the type, the addition FOR is used. This then link this to
zemployees-dob:

SELECT=-0FTIONS my dob FOR zemployees-dob.

When this is output, 2 fields will appear, plus a ‘Multiple selection’ button:

-

=
My _DOB o | [u] L@
Multiple selection

A value range can be selected by entering the low value into the left field and the high

value in the right field. These two fields both include calendar drop down menus, making

194

SELECTION SCREENS

entry here even easier. If the ‘multiple selection’ button is clicked, a new pop-up box ap-
pears:

[EMultiple Selection for MY_DOB

_/ COsngevals = ODRanges | WOSinglevas | @ORanges

B

(TLTTTTT]

The fields here allow multiple single records, or value ranges to be searched for, as well as,
in the case of the latter two tabs, excluded from one’s search results. All of the fields here
as well correspond to the initial data type, and so will all feature calendar drop-downs.
The buttons along the bottom add functionality, allowing values to be copied and pasted
into the rows available, and indeed to create and delete rows among other options. Addi-
tionally on the selection screen, if one right-clicks either field and chooses ‘options’, a list
of the logical operators will be offered, allowing further customisation of the value ranges
selected. This can also be done in the multiple selection box:

MY _DOB ' = = i
o r— 2]

Multiple selection
Delate line
Delete sedaction

195

SELECTION SCREENS

[Select by Inital Vae X

MY_DO8

I Description

1 !]]Single value
2 Greater than or equal to
K| Less than or equal to
> Greater than
K Less than
| Not equal to

1) 1)

| @ Select || @ Exclude from selection |

V| vekete ine (%]
e ——————————————————————

By filling in the fields offered via the SELECT-OPTIONS statement on the selection screen,
each of the fields of the internal table can then be filled depending on the options chosen,
telling the system exactly which values it should (and should not) be searching for.

Select-Option Example

With the select-options defined, some code will now be added.

Create a SELECT statement, selecting all the records from zemployees. Then, inside the
loop, add an IF statement, so that if a record from the zemployees table matches the
value range selected at the selection screen, the full record is written in the output screen.

The IN addition ensures that only records which meet the criteria of my_dob, held in the
internal table, will be included, and where they do not, the loop will begin again:

196

SELECTION SCREENS

SELECT * FROM zemployees.
IF zemployees-dob IN wy_ dob.
WRITE: / =zemployees.
ENDIF.

ENDZELECT.

Put a breakpoint on the SELECT statement, so that you can watch the code’s operation in
debug mode. When you execute the code the selection screen will be displayed. Initially,
do not enter any values for the DOB field. Execute the program and the debugger will ap-
pear. Double click the my_dob field in the field mode. It will be shown to be empty and an
icon will appear to the left indicating that it represents an internal table. If this is double
clicked, the contents of the internal table are shown. Here, all fields are empty as no val-
ues were inserted:

| T |Field names 1-4 ﬂﬁﬂ Fiedd contents
=y - 2 S
| 0000000000000000 & |2
1
Interna table |, Type STANDARD| Format [E al
1l |[SIGHN OPTION LOW HIGH
|c!3 [| 00000000 | 00000000 _ |

Run through the code and all of the records from the table should be written to the out-
put screen, as no specific selection criteria were set.

Run the program again but this time include a value in the DOB field of the selection
screen. This one corresponds to one of the records in the table:

MY _DIOR 02.12,1958 to | E:>|
1
Interna tahle |, Type STANDARD| Format [E l?i|
1l |SIGH OPTION LODW HIGH
& I EQ | 125812021 00000000 -
[t I IEQ | 195812021 00000000

As the select loop is processed, eventually a matching record will be found. When this oc-
curs, rather than skip back to the beginning of the loop, the WRITE statement is executed:

197

SELECTION SCREENS

O |Field names 1- 4w |8y Figdd contents
JIEulBEBIZDZDUDUDDDD
19581202

zenployees-dob

F

Selection Screen Example

00010000004NICHOLS BRENDAN MR 19581202

Run the program again but this time try using the multiple selection tool to select several
values for the DOB field, as well as excluding some:

[EMultiphe Selection far MY _DOB

/ OD2zsngevas | ODRanges -~ @OSngevals @ORanges

D& = 0/a@)x

198

SELECTION SCREENS

j [= Multiple Selection for MY _DOB

OD2Single vals © ODRanges @OSnge vals .~ @ORanges

r =

| Jo1.01.1999 To 20122002 3

To

To

Tao

To

To

To

To —

EEEEEEn

NoveBsmEEX

The internal table now contains several entries for values to search for and to exclude
from its search:

Internal table jType STANDARD Format |E [@
[1 |szcH oPTION LOW HIGH
4 I |EQ |19581202|00000000 N
I IEQ |19581202100000000
I IEQ |19921212]|00000000
E IBT 119990101120021220 ,—
-

The records stored in the select-option table for my_dob show the different types of data
the system uses to filter records depending on the entries we make in the multiple selec-
tions window. Once the program is fully executed the output window then appears like
this:

Selection Screen Example

00010000004NICHOLS BRENDAN
00010000006NORTHMORE PETER

19581202
19921213

H4

199

SELECTION SCREENS

Select-Option Additions

As with most statements, there are a number of additions which can be appended to SE-
LECT-OPTIONS. Similarly to PARAMETERS, one can here use OBLIGATORY and LOWER
CASE, and others in exactly the same way. Unique to this statement, however, is NO-
EXTENSION, which prevents the multiple selection option from being offered to the user.
The ability to select a value range still exists, but extending this via multiple selections is
prevented:

H SELECT-0FTIONS my dob FOR zemployees-dob NO-EXTENSION.

MY _DOB to

Text Elements

We have already touched on the fact that when parameters and select-options are de-
clared the fields are labelled with the technical names given in the code. These fields still
must be referenced using the technical name. However, it will be much preferable for the
user to see some more descriptive text. Let’s see how we can do this by using Text Ele-
ments.

Every ABAP program is made up of sub-objects, like text elements. When one copies a
program, the list of options offered asks which parts of the program one wants to copy.
The source code and text elements here are mandatory, these are the elements which are
essential to the program.

When text elements are created, they are created in text pools, which hold all of the text
elements of the program. Every program created is language independent, meaning that
the text elements created can be quickly and easily translated to other languages without
the need for the source code to be changed.

There are three kinds of text elements which can be used in a program, selection texts,
mentioned above, are one. The other two are text symbols and list headings. Text symbols
can be created for a program so that one does not have to hard code literals into the
source code. List headings, as the name indicates, refer to the headings used when creat-
ing a report. By using these instead of hard coding them into the program, one can be cer-
tain that they will be translated if the program is then used in another language. Also, if

200

SELECTION SCREENS

the headings need to be changed later on, one can just change the list headings set rather
than going into the code and doing this manually.

Selection texts allow text elements to be displayed on the screen so that the user does not
have to see the technical names for fields and the like. There are several ways to navigate
to the screen where these can be created and changed. At the initial ABAP editor screen,
there is in fact an option for creating text elements:

r

Program Z SCREENS 1 : 0 Create |

Subobjects

Source code

“IWariants
Attributes
Docurnentation

c"‘-Te[xht elerments

|'i‘3:(° Display | |£? Change

Alternatively, if one is already inside the program, this can be reached through the ‘Goto’
menu, ‘Text elements’ and select ‘Selection texts’:

\ éﬁio | Utiities Environment System Help

Attributes D DA MARA | #u iy,
Text elements » List Headings '

~ Messages Selactiontexts
Variants Text syrl%:ls

! Qbject directory entry
Documentation [Active
Translation

7 Application help

K Back F3 |

If this is clicked, a screen will appear where selection texts can be created for all of the
technical field names which appear at the selection screen:

201

Text symbols .~ Salection texts

SELECTION SCREENS

- List Headings

=

Mame Text
MY BOX1
MY DOE 7.,
MY FE 2.
WA_BLUE 7...
WA GREEN 7,..
WA RED 7.
LI

The third column here is for ‘Dictionary reference’, which recognises that some of these
fields are linked to fields already created in the ABAP dictionary. If one checks this box and
clicks save, the field names from the initial fields and the ABAP dictionary automatically

Dicti... (1

appear. You can of course choose not to use the text here and overwrite it yourself.

Text symbols . Selaction texts

- List Headings

=]
MName Text
MY BOX1 E.
MY _DOE Date of Birth
MY_EE Ernployee Mumbser
Wi_ELUE 7,
Wi GREEN 7.,
WA _RED 7.,

Dicti,.. [

‘,il

For the others fields, the text must be manually typed in, up to a 30 character limit:

202

SELECTION SCREENS

Tent symbols 4 Selection texts | List Headings

=)

Name | Text picti,.. 03
MY _BOXL MyBox T =
MY DOE Date of Birth v T
MY _EE Ernployeae Murmbsr]

WA_BLUE ELUE
WA_GREEN GREEM

s =
Wh_RED jll=]

Text Elements must then be activated and once this is done, they are automatically saved
and will appear on the selection screen in place of the technical names. The output screen
will now look like this:

Ermplovees Nurmber
| IMy Box
GREEN .
BLUIE
RED
Date of Birth to
Variants
When a user fills in a selection screen, there is the option of saving the entry. This is called
a variant:
4 "y ee@ BHR BDoE
Selection Screen Example 53ve & Vaiant... (Ctl+5)
@
Employee Number 12345678
EJ My Box 0
GREEN
BLUE 0
RED
Date of Birth 08.01.2012 to

203

SELECTION SCREENS

Once this is done, a new screen appears. As long as a name and description are given, this
can be saved for use later on:

ABAP: Save as Variant
Selection variables 47 Soreen assiopnment B B &

a

=

Variant name
Description
Created for selectioh Screens

=Mme
-

noo

Only for background processing
Protect wvariant

Only display in catalog

System wariant (automatic transport)

i,

Field attributes
Fequired f£ield
Switch GFA off
Save field without wvalues
Selection wvariahle
Hide field 'BIS'
Hide field
Protect field |

Field name Type P I N L P L O

Selection screen objects 1000

Enployee Humber
My Box

GREEN

BLUE

BED

Date of Birth

bR o wd W g Ao

Once saved a new button appears on the selection screen next to the execute button,
named ‘Get variant’ allowing the variant entry to be recalled.

Selection Screen Example
R

204

SELECTION SCREENS

A box appears allowing a variant to be selected and when selected, the fields are popu-
lated with the data from that particular entry. Another way to create variants is via the
initial ABAP editor screen.

Choose the ‘Variants’ option. A new variant name can be entered and then the variant can
be created:

ABAP: Variants - Initial Screen
oD O

Program Z_SCREENS 1

I =" |
Variant z2 IU:I Create |
Subohjects
Y ales
Attributes
Gy Display | |z55’ Charige

Once ‘Create’ is clicked, the selection screen appears and you can proceeds as normal,
saving the attributes of the new variant once the entries have been made. You can then
choose between displaying and changing the values and attributes of the variant (‘Values’
will show the selection screen, ‘Attributes’ the screen below. These two views can be

switched between):

205

ABAP: Save Attributes of Variant Z1

Selection varishles 7 Screen assignment

EE"QH

SELECTION SCREENS

Variant name
Description

Created for selection aqgens

Only for background processing
Protect wariant
Only display in catalog

System wvariant (automatic transport)

Field attributes

Fequired field

Switch GPA off

Save field without valued

Selection wariable

Hide field 'BIS'

Hide field

Protect field

Field name

Type

i

Selection screen ohjectas 1000

Enmployes Humber
My Box

GREEN

BLUE

FED

Date of EBirth

L2 = no g

the program does not in fact have to be monitored.

The ‘Protect variant’ option prevents other users from being able to select this variant and

using it on their reports.

‘Only display in catalog’ effectively makes the variant inactive, it will exist, but when a

The ‘Only for background processing’ check box allows you to tell the system to only use
this variant as part of a background job. Here, a job can be scheduled to run overnight so

user views the drop-down menu of existing variants, it will not appear.

206

SELECTION SCREENS

The ‘Field attributes’ section allows the list of possible attributes displayed to be assigned
to the fields in the bottom section of the screen, via the check boxes. Experiment with the
different options available and see the results. For example, you can see that the ‘Re-
quired field’ check box for ‘Employee number’ has been filled here, as this was labelled
OBLIGATORY in the program. The P’s and one S which appear by the fields simply refer to
whether each field is a parameter or select-option.

Choose ‘Protect field’ for the Date of Birth field; it will no longer be possible to change the
value set until such time as this box is un-checked. In the image below you can see this
field has been greyed out and cannot be changed:

Protect field

Field name Type P I N L P L 0O

Selection =creen ochjects 1000

Employes Number P

My Box P

GREEN P 1000 LC]

BLUE P

FED P

Date of Birth - L
I 1

Date of Birth UE,Dl,EﬂlZJIj to

|~

When large selection screens are created, users will regularly create variants so that, if
necessary, the same data can be used repeatedly when running reports, saving the time it
would take to fill in the information again and again. Unnecessary fields, or fields which
will always hold the same value can be protected so that filling in the screen becomes a
much simpler and less time consuming task for the end user.

At the ABAP editor’s initial screen, there is in fact a button which allows the program to
run with a variant, directing one straight to the selection screen with the variant’s values
already present:

207

SELECTION SCREENS

ABAP Editor: Initial Screen
b 1 @ o B A 06D ®bebugong QVWir%Vé:ant [variants

Execute with variant (Shift+F6)

T
Program 2 _SCREENS 1 2 D Create |

The ABAP editor will likely not be accessed by the user but reports can be accessed via the
‘System’ menu, ‘Services’, and then ‘Reporting’. Selecting this presents the 'ABAP: Execute
Program’ screen, which could be described as a cut-down version of the ABAP editor
screen, minus the editing functionality. From here the program can again either be exe-
cuted directly or executed using a variant which can be selected from the menu which is
offered:

| System | Help

) Crgate Session
End Session(L)

@®

Lisar Profile ¥
Services Feportin
I: Utilities(H) QL.i:kUieh

List Cutput Control

Setvices for Ohject Table Mantenance

My Ohjects Batch [nput

Crwin Spool Requests Fast Entry

Ot Jobs Direct Input

Shart Message CATT

Status,.. Iobhs

Log off Qusle
SAP Service
Appointment Calendar
Business Workplace

SELECTION SCREENS

ABAP: Execute Program

® O with variant [Overview of variants Background

=
Program A SCREENS 1]

If the program is executed directly and the user then wants to use a variant, this can also
be done via the ‘Goto’ menu:

Goto | Systern Help

ariants 3 Get... chift+F5 ,3
L | Display. ., -
! Selection screen help shift+Fa Delete...
Back F3 Save a5 Variant... Cirl+5
Text Symbols

We will now take a look at other text objects starting with Text Symbols. These are used to
replace literals in a program. For example, when the WRITE statement is used, one can
choose to use text symbols to reuse text which has already been set up. This also gives the
added functionality of being able to use translated text within the program. This allows
hard coded literals to be avoided and text symbols used in their place.

Text symbols effectively function as placeholders for text. So, rather than having “WRITE:

) n

/ ‘Surname’.” multiple times in the code, you can avoid using the literal by using “WRITE:
/ text-001.” which here would refer to a text symbol which can be set up with the text
“Surname” itself.

WRITE: / 'Surname',

WRITE: / text-001.

209

SELECTION SCREENS

Text symbols are always declared with the word ‘text’ followed by a dash and a three digit
number. This means that up to 1000 text symbols can theoretically be used in a program,
of which each one can be translated into as many languages as one wishes. One thing to
remember here is that text symbols are always limited to 132 characters in length.

To create a text symbol, you can use the ‘Goto’ menu, select ‘Text elements’ and then
‘Text symbols’, or you can use forward navigation. Just double-click ‘text-001’. A window
will then appear asking if you want to create this object, select ‘Yes’. The Text Elements
window will then appear and text can be entered for the new text symbol.

Text symbols | Selection texts . List Headngs | h
& | [B] b,
S.. | Text d... |m..
r 3
0oL 0 132
L <
0
0

Here, include the word ‘Surname’. The column on the left references the text symbol id
‘001’. The two columns on the right note the text’s length and maximum length:

Text symbals | Selection texts - List Headngs

& (=[] By
S.. | Text v | MNiss
0ol [5urnarre 7 7

This can then be activated and you can step back to the program. If the code is then exe-
cuted, the word ‘Surname’ will be output twice, the first from the WRITE statement with
the literal, the second from the WRITE statement with the newly created text symbol:

Surname

Surname

It is advisable to use text symbols rather than literals as often as possible as it is much eas-
ier to change the text symbol once than to sift through the code to find and change many
literal values. Additionally, using text symbols gives the added benefit of translatability.

210

SELECTION SCREENS

Text Messages
The next thing to be examined here is messages. When one wants to give feedback to the
user, literals can be used, but as stated above, this is to be avoided as far as possible. To

use messages then, these must first be stored in a message class, which is in turn stored in
a database table called T100.

At the ABAP dictionary’s initial screen, type ‘T100’ into the database table field and choose
‘Display’:

Transp. table T100 " Active
Short text Messagesl

Attributes - Delivery and Maintenance - Fields | Entry help/check Currency/Quantity Fields

¥R s b al i Y W% schhelp | :
Field K.. L.. Dataelement DTyp | Len.. Dec.. Shorttext
Epm : 7| [4) SPRAS LANG 1 OLanguage key
AREGE /|| ARBGB CHAR 20 0 Application area
M3GHR 71 7] MSGNR CHAR 3 OMessage number
TEXT T[] NATXT CHAR 73 OMessage text

If one views the contents of this, one can see the four fields displayed. One for language
(here D, referring to German), one for the application area, one for the message code and
one for the message text:

Displayed fields: 4 of 4 Fixed columns: ji:h' width 0250
Language|Applic. area HNessage |Message text
D 00 000
D 00 001 &l62636465666768
D oo ooz Bitte gultigen Wert eingeben
D oo 003 Message mit maximaler Lange und maximalen variablen Teilen: & & & & 1234%
D oo 004 Speicher-Verbrauchsanzeige eingeschaltet
D 00 00s Speicher-Verbrauchsanzeige ausgeschaltet
D oo 006 &l gelesen (&2 Zeilen)
D 0o 007 &l ist leer

To create new messages to be used in your program, forward navigation can be used, or
the transaction SE91 can be directly accessed:

211

SELECTION SCREENS

Message Maintenance: Initial Screen

S H OP a

Message class _|] Create

Subobiects

Attributes
= Massages
Mumber

|l$3:r“ Display | |.4? Change |

First, create a message class. These must again follow the customer name space rules,
here beginning with the letter Z. Let’s call this ZMES1 and choose Create. Messages are
distinct from text elements as they are not themselves part of the program created. They
exist independently. They are instead stored in the T100 table. This means that messages

can be reused across many programs.

The attributes must be filled in, creating a short text. Then, in the messages tab, the text
to be used can be created:

Message class ZMES1 Activ

< Attributes Messages

Package $TMP

Last changed by BCUSER

Changed on 02.08.2012 Last changed at 15:00:56
Attributes

Original lang. EN| English

=

-
Person respons. Jm

N}

Short text test message class

212

SELECTION SCREENS

Remember that, when the AT SELECTION-SCREEN event was created, an IF statement was
used so that if the employee number given by the user was greater than the last employee
number used in the table, a message would be displayed. Here, the text for that message
can be created:

Message class ZIMES1 Activ

Attributes .~ Massages

BE [E][2]] 3] Kmms]x] mEEkE:E:- _
Mess,.. | Message short text Self-explan... E
(elu]x] I}mp].cr,ree Number is too high | =

L . -
a0l
an2

Once the text is entered, it can be saved.

There are a number of message types which can be used, as this table explains:

A | Termination The message appears in a dialog box, and the program terminates.
Message When the user has confirmed the message, control returns to the
next-highest area menu.

g | Error Depending on the program context, an error dialog appears or the
Message program terminates.

| Information The message appears in a dialog box. Once the user has confirmed
the message, the program continues immediately after the MESSAGE

statement.
s | Status The program continues normally after the MESSAGE statement, and
Message the message is displayed in the status bar of the next screen.
w | Warning Depending on the program context, an error dialog appears or the

program terminates.

x | Exit No message is displayed, and the program terminates with a short
dump. Program terminations with a short dump normally only occur
when a runtime error occurs. Message type X allows you to force a
program termination. The short dump contains the message ID.

For this example, type E, an error message, will be used. Depending on where this type of
message is used, it will have a different effect. Here, it will be used at the “at selection-
screen” and the program’s execution will pause, the error message will be displayed and

213

SELECTION SCREENS

the user will be allowed to amend their entry. When the new entry appears, the event will
begin again. If an error message is used elsewhere, outside of an event in the main body
of the code, when this is triggered the program will terminate entirely.

To include the newly created message in the code, then, the syntax is “MESSAGE
e000(ZMES1).” The ‘e’ refers to the error message type, the ‘000’ to the number assigned
to the message in the message class, and then ‘ZMES1’ to the class itself:

INITIALIZATION.

SELECT * FROM zemployees.
va_eunployee = zemployees-employee.
ENDSELECT.

AT SELECTION-SCREER ON my_ee.
* Check to make sure the employee number 13 not greater than the
* last employee number in our table.
IF my ee > wa employee.
MESSAGE eD00(ZHESL).
ENDIF.

The INITIALIZATION event will populate wa_employee with the last, highest employee
number used in the table, and then, at the AT SELECTION-SCREEN event, the value en-
tered can be checked against this. If it is higher, the error message will display. You can
monitor these values in debug mode to watch the code in action. Here, the number is
higher so, once executed, the selection screen will be returned to and the message dis-
played in the status bar:

Selection Screen Example

® &
Ernployes Mumber 555@5
|ﬁ|Fi9Id names 1 -4 aﬁ| Fiedd contants
LT St — T |
oy - | 55555555 %]E
wa_employee 10000006 ®|2]

D Employee Number i too high

214

SELECTION SCREENS

Once a legitimate, lower value is entered, the program will continue as normal without
triggering the error message.

An addition which can be used with the MESSAGES statement is WITH. Here, a field can be
specified, for example to display the invalid value which was entered by the user in the
message itself. The WITH addition allows up to 4 parameters to be included in the error
message. To do this, one must ensure the error message is compatible.

Create another message in the message class screen, this time with an & character. When
used in conjunction with the WITH addition, this character will then be replaced by the
value in the specified parameter:

Message class ZMESL Activ

~ Attrbutes Messages

BB 521 0] K[a@[X[x) B8t
Mess... Message short text
ono Euployee Number is too high

r
001 Empﬁoyee Number ¢ 1s too high

Save the new message, add “WITH my_ee” to the MESSAGES statement and change the
number of the message referenced in the code to the new 001 message:

AT SELECTION-SCEEEN 0N my_ee.
* Check to make sure the employes number is not greater than the
* last employes mumher in our tahle.
IF my ee > wa_employee.
HESSAGE 2001 (ZMESLl) with my ee.
ENDIF.

i Employee Number 55555555 is too high

As messages created are not specific to the program itself, but can be used across the en-
tire system, it is usually worth checking if an appropriate message for the task you are per-
forming already exists, rather than continually setting up new messages.

215

SELECTION SCREENS

Skip Lines and Underline

Now, a look will be taken at formatting selection screens. This will allow the screen to be a
lot easier to navigate and so on for the end user. Parameters and select-options have al-
ready been set up, but as yet no layout options have been implemented allowing the sys-
tem to place the objects by itself. This is generally not sufficient. For example, when a
group of radio buttons appear, they should be distinct and positioned in a group on their
own, clearly separated from other parts of the screen.

The SELECTION-SCREEN statement, and its associated additions allow this kind of format-
ting to be done. One must locate where in the code the screen layout begins to be re-
ferred to. Here, this is at the top when PARAMETERS is declared. In the line above this,
type the statement SELECTION-SCREEN. Additions must then be added.

First, to add blank lines you can use the SKIP addition, followed by the number of lines to
be skipped. If you only want to skip 1 line then the number can be omitted as this is the
default values. This line of code must then be moved to the place where you want the line
to be skipped. Place it under the my_ee parameter. Note that the PARAMETERS chain is
now broken, so another PARAMETERS statement must be added:

PARAMETERS: my ee LIEE zemployees-employee
DEFAULT '1Z2345673' OBLIGATORY.
SELECTION-3CEEEN 3KIF.
PAFAMETERS: ny boxl AS CHECKEOX,
wa green RADIOBUTTON GROUP grpl,
wa_hlue RADICOBUTTON GROUP grpl,
wa_red FRADIOBUTTON GROUP grpl.

SELECT-0PTIONS wy_dob FOR zemployees-dob NO-EXTENSTON.

216

SELECTION SCREENS

Selection Screen Example

@

Ernployes Mumber

My Box

GREEM .

BLLE

RED

Date of Brth to

To add a horizontal line, the ULINE addition can be used:

PARAMETERS: my ee LIKE zemployees-employee

DEFAULT '12345678' OBLIGATORY.
SELECTION-3CEEEN TLIHNE.
SELECTION-3CEEEN 3KIF 2.

PARAMETERS: my_boxl AS CHECEBOX,
wa_green FRADIOBUTTON GROUP grpl,
wa_blue RADIOBUTTON GROUF grpl,
wa_red RADIOBUTTON GROUP grpl.

SELECT-0PTIONS wy dob FOR zemployees-dob NO-EXTENSION.

Ernployee Nurnber

My Boe
GREEMN Ol
BLUE
RED
Date of Bith to

There are further additions which can be added to ULINE to determine its position and
length. The code in the image below sets the position of the line to the 40th character
from the left of the screen, and its length is set to 8 characters:

217

SELECTION SCREENS

PARAMETERS: my ee LIKE zemployees-employee

DEFAULT "12345673' OBLIGATORY.
SELECTION-SCREEN ULINE /40(8).
JELECTION=-3CREEN SEIP 2.

Ermployes Mumber

Comments

Comments allow text to be placed on screen without creating new fields. The SELECTION-
SCREEN statement is again used, with the addition COMMENT. Similar additions to ULINE
can be used to set the position and length of the comment. This is then followed by either
a text element which has already been set, or a field name. This is not declared with a
DATA statement, but is determined by the length which the comment is set. Here, the text
element text001 is used, which reads ‘Surname’, and this will appear 40 characters from
the left:

PARAMETERS: my ee LIKE zemployees-employee

DEFAULT '12345678' OBLIGATOEY.
SELECTION-3CREEN ULINE /40(8).
SELECTION-3CREEN SEIFP 2.

SELECTION-5CEFEEN COMMENT /40(15) text-00l.

Erniployes Mumber

Surnanme

If you do not want to use a text element, a new field can be created here. Copy the initial
SELECTION-SCREEN statement and add the new variable “comm1”. This variable is cur-
rently empty and must be given a value. This must be added in the INITIALIZATION part of
the code, so that it is initialised when the program starts. Here, write “comm1 = ‘Hello
SAP’.”:

218

SELECTION SCREENS

PARAMETERS: my ee LIKE zemployees-employee

DEFAULT "l1Z345678' OBLIGATORY.
SELECTION-3CREEN ULINE /40(8).
SELECTION-3CEREEN COMMENT /40(15) text-00L.
SELECTION=-3CEEEN COMMENT /40(15) comml.

INITIALIZATION.

comml = 'Hello SATY.

Ermployees Murmber

Surname
Hello SAP

Format a Line and Position

Now, let’s take a look at how to format a single line on the selection screen. When indi-
vidual lines for the selection screen are defined, the start and end of these lines must be
declared, and in between these lines the parameters and select-options appear.

Above the formatting code already created, type “SELECTION-SCREEN BEGIN OF LINE.”,
and then underneath “SELECTION-SCREEN END OF LINE.” Anything appearing between
these statements will now all appear on the same line. Then, alter the formatting code
slightly so that this will work, removing the ULINE statement, moving the text001 com-
ment (which reads ‘Surname’) to the first space on the line, and the comm1 comment
(reading ‘Hello SAP’) to the 20" space and change the length of this to 10 characters. Also,
remove the /n which put these on a new line. Finally, add a new PARAMETERS statement
beneath the second comment in the code, named ‘ABC’, with a length of 5:

PARAMETERS: my_ee LIFE zemployees-emplovee
DEFAULT '"12345678' OBLIGATORY.

SELECTION-3CREEN EBEGIN OF LINE.
SELECTION-SCREEN COMMENT 1(15) text-001.
SELECTION-SCREEN COMMENT 20(10) comml.
FPARAMETER ABC(5).

SELECTION-SCREEN END OF LINE.

219

SELECTION SCREENS

Ermployes Murnber
SLimame Hello AP

You can now see that the code between the BEGIN and END OF LINE statements now all
appears on one line; its formatting determined by the positions and lengths assigned to
each statement. Note that here the parameter was not automatically given a description
(the technical name of the field) as others have been. This is because specific comments
have been used on the same line. When you are formatting a line in this way, he com-
ments can be used to act as descriptions for the field.

Another addition, which can only be used within BEGIN and END OF LINE, is POSITION.
This is not commonly used because this can effectively be set by alternate methods, as
above. However, if one desires, the position of the next element can be set separately.
Here, the parameter will appear 30 spaces into the new line:

PARMMETERS: my_ee LIFE zemployees-employee
DEFAULT '12345676' OBLIGATORY.

SELECTION-3CEEEN BEGIN OF LINE.

SELECTION-SCREEN POSITION 30.
PARLMETER abc(5).

SELECTION-3CREEN END OF LINE.

Ernployes Murnber

Note that here the technical name still does not appear, as the parameter is still between
the BEGIN and END OF LINE statements.

There is also a further option which can be included with the POSITION addition. The de-
fault positions of parameters and select-options on the screen are referred to as ‘position
low’ for the left hand side, where standard parameters and the low end of value ranges
appear, and ‘position high’ for the right hand side, where the upper end of a value range
would appear. These default positions can be used with the POSITION addition. To place a
parameter in the ‘position high’ position, you would include pos_high at the end of the
statement:

220

SELECTION SCREENS

SELECTION-SCREEN EEGIN OF LINE.
SELECTION-SCREEN POSITION pos_high.
FPARAMETER abc(5).

SELECTION-5CREEN END OF LINE.

Ernployae Murmnber

Sumame Hello Sap

My Box
GREEN .
BLLE
RED
Date of Brth to

You can see that the parameter now matches up with the ’position high’ default value
when compared to the upper end of the Date of Birth value range. Unsurprisingly, this is
replaced with pos_low to make it correspond to the default ‘position low’ column.

Element Blocks

When you are creating selection screens, it is common practice to group certain fields to-
gether. You can make use of these element blocks, which will draw frames around the cer-
tain groups of fields which are designated. These frames can then be given frame labels.
Bear in mind when looking at these it is possible to nest element blocks within other ele-
ment blocks, allowing individual sections of the selection screen to be subdivided.

The syntax for this is very similar to that of BEGIN and END OF LINE. Above where these
statements were tested before, add the code “SELECTION-SCREEN BEGIN OF BLOCK”, fol-
lowed by a name for this block, here “myblock1”. To then add a frame to the block, the
WITH FRAME addition is then used. The frame can then be given a title using, like com-
ments, either a text element or separately defined variable. This is done after the WITH
FRAME addition, adding TITLE and then, here ‘text-001’, which as before contain the val-
ues ‘Surname’.

221

SELECTION SCREENS

Having done all of this, you must remember to then use END OF BLOCK followed by the
block name so that the system knows which block is ending:

SELECTION-3CREEN BEGIN OF BLOCK myblockl WITH FRAME TITLE text-00L.

SELECTION-3CEEEN BEGIN OF LINE.
SELECTION-SCREEN FOSITION pos_low.
PARAMETER abc(5).

SELECTION-5CREEN END OF LIMNE.
SELECTION-3CEEEN COMMENT 1(15) text-001.
SELECTION-3CREEN COMMENT 20(10) comml.

SELECTION-3CREEN EMD OF BELOCE myblockl.

(e Sy T =] =

Surmanme

Surnanme Hello SaP

Element blocks, when used correctly, add context to the selection screen, making it easier
for the end user to understand the screen entry requirements.

222

INTERNAL TABLES

Chapter 12 — Internal Tables

Introduction

Dealing with internal tables is one of the most important parts of working with ABAP. In-
ternal tables have been hinted at briefly before, but not examined in any great depth. This
chapter will do precisely that. If one is working in ABAP in any way at all, it is crucial to un-
derstand internal tables, as almost every program will use them. You have to understand
both the old method of using header lines, and the new method using separate work ar-
eas. SAP has existed a long time, and while practices change, one will still often find old
methods being used. When one is creating new programs, though, the newer method is
always to be used.

Internal tables only ever exist when a program is running, so when the code is written, the
internal table must be structured in such a way that the program can make use of it. You
will find that internal tables operate in the same way as structures. The main difference
being that Structures only have one line, while an internal table can have as many as re-
quired.

Internal tables are used for many purposes in ABAP. They can be used to hold results of
calculations to then use later in the program, hold records and data so that this can be
accessed quickly rather than having to access this data from database tables, and a great
number of other things. They are hugely versatile, as they can be defined using any num-
ber of other defined structures, allowing, for example, many tables to be grouped to-
gether and then placed into one internal table.

The basic form of these consists of a table body, which is all of the records within the ta-
ble, and a header record in the case of the older-style internal table. In the case of the
newer style of internal table, the header record is absent and replaced by a separate work
area. The header line or work area is used when you read a record from the internal table,
providing a place for this ‘current’ record to be placed which can then be accessed di-
rectly. The header line or work area is also used and populated if you need to add a new
record to the table, which is then transferred from the structure to the table body itself.

223

INTERNAL TABLES

Previously, the TABLES statement has been used to include a table which has been created
in the ABAP dictionary in a program. Internal tables, on the other hand, have to be de-
clared themselves. When this is done, you must also declare whether a header record or
separate work area will be used.

When creating new programs with internal tables it is best practice to use separate work
areas. Using a header record has a number of restrictions, for example, you are not able to
create multi-dimensional tables. We will not be cover multi-dimensional tables at length
here, but if you plan to go further with ABAP, they will become important.

There are some restrictions on the records which can be held in internal tables. The archi-
tecture of an SAP system limits the size of internal tables to around 2GB. It is also impor-
tant to bear in mind how powerful one’s SAP system is (the hardware and operating sys-
tem). It is generally best practice to keep internal tables as small as possible, so as to avoid
the system running slowly as it struggles to process enormous amounts of data.

Types of Internal Tables

Now the difference between the older and newer style internal tables has been men-
tioned, from here on, assume that it is the newer kind which is being discussed - an inter-
nal table with a work area.

An internal table can be made up of a number of fields, corresponding to the columns of a
table, just as in the ABAP dictionary a table was created using a number of fields. Key
fields can also be used with in internal tables and when creating these internal tables offer
slightly more flexibility. In the ABAP dictionary, using key fields is imperative to uniquely
identify each record. With internal tables, one can specify a non-unique key, allowing any
number of non-unique records to be stored, allowing duplicate records to be stored if re-
quired.

Different types of internal tables can also be created, so that data can be accessed in the
most efficient manner possible.

Standard Tables

First, there are standard tables. These give the option of accessing records using a table
key or an index. When these tables are then accessed using a key, the larger the internal
table is, the longer it will take to access the records. This is why the index option is also
available. Standard tables do not give the option of defining a unique key, meaning the

224

INTERNAL TABLES

possibility of having identical lines repeated many times throughout the table. Addition-
ally, though, this means that standard tables can be filled with data very quickly, as the
system does not have to spend time checking for duplicate records. Standard tables are
the most commonly used type of internal table in SAP systems.

Sorted Tables

Another type of internal table is the sorted table. With these, a unique key can be defined,
forcing all records in the table to be unique, removing duplication. These can again be ac-
cessed via the key or index. As the records are all unique, using the table key to find re-
cords is much quicker with sorted tables, though still not the fastest in all situations. It is
often preferable to use a sorted table over a standard table, given the faster access speeds
and the fact that this kind of table will sort records into a specific sequence. This gives one
a substantial performance increase when accessing data.

Hashed Table

The final type of internal table to be discussed here is a hashed table. With these, an index
is not used to access the data, only a unique key. When it comes to speed, these are likely
to be the preferred option. These are recommended particularly when one is likely to be
creating tables which will be very large, as accessing data in large table is likely to be fairly
laboured when using standard or sorted tables. These tables use a special hash algorithm
to ensure the fast response times to reading records are maintained no matter how many
records are held.

Despite the speed of hashed tables, you will however find that standard and sorted tables
are generally used significantly more in SAP programs. Because of this, the majority of fo-
cus here will be put on these.

Internal Tables - Best Practice Guidelines

As SAP has been around a long time, many programs exist that conform to using the older
style internal table. You must be aware of this without falling into bad habits and using
this style. It is now considered best practice to always use the newer style of internal table
in SAP, ensuring that the programs created will be continue to be usable in the future,
once the older style has been completely abandoned. Both old and new styles will be dis-
cussed here, so that you gain a degree of familiarity with the old style which persists in
places, but when creating programs of your own, the new style should always be used.

225

INTERNAL TABLES

Creating Standard and Sorted Tables

Create a new program in the ABAP editor called Z EMPLOYEES LIST 03 to use for the
creation of internal tables. To begin to declare an internal table, the DATA statement is
used. The program must be told where the table begins and ends, so use the BEGIN OF
statement, then declare the table name, here ‘itab01’ (itab is a commonly used shorthand
when creating temporary tables in SAP). After this, the OCCURS addition is used, followed
by a number, here 0. OCCURS tells SAP that an internal table is being created, and the 0
here states that it will not contain any records initially. It will then expand as it is filled
with data:

" DATA: BEGIN OF itab0l OCCUES 0O,

On a new line, create a field called ‘surname’, which is declared as LIKE zemployees-
surname. Create another field called ‘dob’, LIKE zemployees-dob. It may be useful initially
to give the field names in internal tables the same names as other fields which have been
created elsewhere. By doing this, later on the MOVE-CORRESPONDING statement can be
used to move data from one table to another. Finally, declare the end of the internal table
is declared with “END OF itab01.”

DATA: BEGIN OF icab0l OCCURS 0O,
surname LIFE zemployess-surnames,
dob LIEE zemployees=dob,
END OF itabOl.

The structure of the internal table is now created, and code can be written to fill it with
records. Using the OCCURS statement above, this automatically tells the system that an
old style internal table with a header record is being used.

As mentioned earlier, it is advisable to always create the new style of internal table, allow-
ing ABAP objects and so on to be used. With the new style of object-oriented program-
ming it is encouraged to keep all the objects of your code separate, so that they can be
reused in other programs and so on. To create the new style of internal table, the code is
slightly different, separating out the individual data objects, like building blocks, which can
then be put together to create new data objects later and so on. The manner in which this
is done may seem significantly more laborious, but when you are working with larger,
more complicated programs, the benefits will be clear.

226

INTERNAL TABLES

Create an Internal Table with Separate Work Area

Instead of using the DATA statement, this time start by defining a line type, using the
TYPES statement. Following this, the BEGIN OF statement is used, followed by a name,
here ‘line01_typ’. Below this, the surname and dob fields from above can be created as
before. Then the END OF statement is used to end the line type definition:

TYPES: BEGIN OF line0l_typ.
surname LIEE zemployees-surname,
daob LI¥E zemployees-dob,
END OF line0l_typ.

Rather than defining the entire table structure at once, here only the structure of one line
is defined. The table itself has not yet been defined. As a result of this, the OCCURS state-
ment has not been used.

Once the line has been defined, next you define the table type. Again, use the TYPES
statement, followed this time by the table, here ‘itab02_typ’ (note the _typ addition to
the end as it is only the table type being defined, not the table itself). Follow this with
“TYPE STANDARD TABLE OF line01_typ.”; telling the system it will be a standard table
containing the structure of the line-type defined above:

|| TYPES itab0Z_typ TYPE STANDARD TABLE 0F line0l_typ.

In place of the OCCURS clause used for the old style of table, you can optionally add to the
end of the line “INITIAL SIZE (n)” where (n) would be a number corresponding to the size
you initially want the table to be. However, this is completely optional and is not fre-
quently used.

If you want to create a sorted table, the ‘STANDARD’ in the above line is replaced with
‘SORTED’. You then have to specify the table key, with the addition “WITH UNIQUE KEY
(field name)” where (field name) would be one of the fields set up in the line type defini-
tion, in this example ‘surname’. If you want more than one key field, these are simply then
separated by commas:

TYPES itab0Z_typ TYPE S0RTED TAELE OF linedl_typ
WITH URIQUE KEY surname.

227

INTERNAL TABLES

Next, the table itself must be declared. As the table type defined was based on the line
type previously defined, the table itself will be based on the table type. Here, the DATA
statement returns, followed by the name of the table, ‘itab02’, and the TYPE of table to be
used - ‘itab02_typ’:

|| DATA itab0Z TYPE itab0Z_typ.

You still have the option to use a header line, but this must be explicitly stated when cre-
ating an internal table in this way. To do this, you simply add WITH HEADER LINE to the
code above. This is however, as stated several times already, generally not advisable.

The final thing to do when creating an internal table this way is declare the work area
which will be used in conjunction with the table. Remember that the work area is com-
pletely separate from the table, which has now already been created, allowing one to
work with the data from the table in a way which is removed from it. This also allows for,
if one wants, the same work area to be used for multiple tables, as long as they have the
same structures, an example of reusing the code.

To declare Work Area, again use the DATA statement followed by the work area name,
here ‘wa_itab02’. After this, the TYPE statement is used to specify the line type, here we
can use the one already defined as ‘line01_typ':

|| DATA wa_itab02 TYPE line0l_typ.

While the manner in which the old style table is created may certainly seem easier, the
newer method is much better and much more flexible. For example, having written all of
the above code, if one then wanted to create a new table with the same structure, only
one new line of code would have to be written, since the line and table types have already
defined. The table ‘itab03’, for example, could be created simply by adding one line of
code:

DATA itab02 TYPE itabl0Z typ.
DATA itab02 TYPE itab02_typ.

Filling an Internal Table with Header Line

228

INTERNAL TABLES

When you are reading a record from an internal table with a header line, that record is
moved from the table itself into the header line. It is then the header line that you pro-
gram works with. The same applies when creating a new record. It is the header line with
which you work with and from which the new record is sent to the table body itself.

Below appears some slightly more extensive code for an old-style internal table, which can
then be populated:

TABLES: zemployess,
*Internal Table with Header line

DATA: BEGIN OF itabOl OCCURS O,
euployee LIEE zemployees-employes,

FUurname LIFE zemployees-surname,
forename LIFE zemployees-forenams,
title LIKE zemployees-title,
doh LIKE zemployees-dob,

lo= TYPE 1 VALUE 3,

END OF itab0l.

The fields should broadly be familiar. The only new one here is ‘los’, representing ‘length
of service’, an integer type with a default value of 3.

To start to fill this table, you can use a SELECT statement to select all of the records from
the zemployees table and then use “INTO CORRESPONDING FIELDS OF TABLE itab01.”,
which will move the records from the original table into the new internal table into the
fields where the names correspond. This type of select statement is called an array fetch,
as it fetches all of the records at once, and places them in a new location. Notice that
there is no ENDSELECT statement here - it is not a loop that is created:

SELECT * FROM zemployees
INTO COREEZPONDING FIELDS OF TAELE itab0l.

As the new los field does not have a corresponding field in the zemployees tables, every
record will have this field populated with the los’ default value of 3. Add a WRITE state-
ment for itabO1-surname below just to assist in the debug session coming up. Set a break-
point on the SELECT statement, and execute the code to enter debug mode and observe
the code as it works.

229

INTERNAL TABLES

If you view the internal table before executing the next line of code here, you can see that
it is currently empty. The line with the hat icon represents the current contents of the
header line and below this, the lines of the internal table will be filled in. As you execute
the array fetch, all of the lines of the internal table are filled at once:

= @) SELECT * FROM zemployees
INTO CORRESPONDING FIELDS OF TABLE itahOl.

WEITE itab0l-surname.

m M —
Interna table |_ ! Type STANDARD Farmat E lﬁi_l
1 |EMPLOYEE SURNAME FORENAME '

& 00000000 [

sy :

Internal table [tabil] Type sTANDARD| Format [E|)
1 ||[EMPLOYEE SURNAME FORENAME l
& oooooooo| [
1 10000002 J0NES | AITY
2 10000003 |[MICHAELS | ANDRETH
3 10000004 |NICHOLS | BREND AN -
4 10000005 |MILLS | ALICE -

A different way of filling the table would be with the code below, this time with a select
loop filling each field one at a time, using the MOVE statement to move the data from one
table’s field to the other. Note that los is not present here since it does not have a field in
the zemployees table.

230

SELECT
HOVE
MOVE
MOVE
MOVE
HMOYE

TMRITE

If you debug this code, you can see how it operates line-by-line as opposed to the array
fetch which did all of the records at once. As you execute the first MOVE statement, it is

* FROM zemployees.
zemployees-enployee
zemployees—-surname
zemployees-forenane
zemployees-title
zemployees-dob

ENDSELECT.

itab0l-surname.

44433

INTERNAL TABLES

itab0l-employee.
itab0l-surname.
itah0l-forename.
itabh0l-title.
itah0l-dob.

visible that the first employee number appears in the header record of the internal table:

@ SELECT * FROM zemployees.

MOVE zemployees-employee
= MOVE zemployees-surname
MOVE zemployees-forename

MOVE zemployees-title

-
Interna table 8 tab0l

1 EMPLOYEE SURNAME

TO itabOl-employee.
TO itab0l-surname.
TO itabOl-forenanme,
TO itahOl-ticle.

i —
|, Type sTAwDARD| Format [E|)]

FORENAME

& 10000002)

Stepping through the code you will see the other fields gradually appear in the header line
until the end of the SELECT loop is reached. However, once this happens, since no code
has been included telling the program to append the data in the header record to the in-
ternal table, this will simply be overwritten by the next iteration of the loop. This is a
common mistake when using header lines and can be avoided by using the APPEND

statement.

Before the ENDSELECT statement add another line of code reading “APPEND itab01.”, tell-

ing the system to add the contents of the header line to the internal table.

231

SJELECT
MOVE
MOVE
MOVE
HMOYE
MOVE

APPEND itaol.
= ENDSELECT.

* FROM zemployees,
zemployees-enployes
zemployees—-surname
zemployees-forenane
zemployees-title
zemployees-dob

APPEND 1tab0l.
END3ELECT.

WRITE itab0l-surname.

43433

INTERNAL TABLES

itab0l=employee.

itabl0l-surname.

itab0l-forename.

itab0l-title.
itah0l-dob.

Internal table C tab0l 3 Type STANDARD Format |E |DE|
1 |EMPLOYEE SURNAME FORENAME
43 10000002 | JONES | &MY
1 10000002 | JONES | AN

Move-Corresponding

In the example, the MOVE statement was used several times to move the contents of the

zemployees table to the corresponding fields in the internal table. It is possible however

to accomplish this action with just one line of code. You can use the MOVE-
CORRESPONDING statement. The syntax for this is simply “MOVE-CORRESPONDING
zemployees TO itab01.”, telling the system to move the data from the fields of
zemployees to their corresponding fields in itab01. This is made possible by the fact that
both have matching field names. When making use of this statement you need to make
sure that both fields have matching data types and lengths. This has been done here with
the LIKE statement previously, but if it is not, the results could be unpredictable:

SELECT * FROM zemployees.

MOVE-CORERESPONDING zemployees TO itabil.

AFPPEND 1tahOl.
END3SELECT.

232

INTERNAL TABLES

Next, copy the code with which the itab01 table was created to create another internal
table called itab02. This time, the fields will be populated with an INCLUDE statement, so
remove the fields between the BEGIN OF and END OF statements and replace them with
the code “INCLUDE STRUCTURE itab01.” This will create a new table with the same struc-
ture:

DATA: BEGIN OF itab0Z OCCURS 0.
INCLUDE STRUCTURE itahOl.
DATA END OF icabOz.

You are not limited to using the structure of another internal table, another table created
in the ABAP dictionary’s structure could be used with the same statement:

DATA: BEGIN OF itab03 DCCURS 0.
INCLUDE STRUCTURE =zemployees.
DATA END OF itab03.

Using this method can save a lot of time coding, and can be enhanced further allowing you
to include multiple structures within one internal table, as below (though this example
would, in fact, just include two of each column as zemployees and itab01 have effectively
the same structures):

DATA: BEGIN OF itabO4 OCCURS 0.
INCLUDE STRUCTUEE =zemployees.
INCLUDE STRUCTURE itabOl.
DATL END OF icabd4,

As long as the structures used have previously been defined in the system, this statement
can be used to include many structures within newly created internal tables. You can also
add new data statements as were previously used to declare internal table structures, ex-
tending the structures which have been included with new fields.

Let’s return to the array fetch method of populating internal tables. You will note that
when using this method, all of fields were filled simultaneously, without using the header
record. This is a very effective and quick method to use, given that there is no loop, so re-
cords do not have to be written to the table one at a time:

|| SELECT * FROM zemployees INTO CORRESPOMDING FIELDS OF TABLE icabOl.

233

INTERNAL TABLES
Additionally, you do not have to use the * which selects all of the fields of zemployees, but
can specify the individual fields you want to move in this way. See the example below:

SELECT surname forename dob FROM zemployees INTO COREESPORDING FIELDS
OF TABLE itab0l.

Filling Internal Tables with a Work Area

Now, if you are, following the newer method of using internal tables, the header record is
to be bypassed entirely and the table filled from a separate work area.

Return to the code which was shown above for creating a table with the new method,
shown below:

*Declare a Line Type
TYPES: BEGIN OF lineOl_ctyp,
surname LIKE zemployees-surname,
dob LIKE zemployees-dob,
END OF line0Ol typ.

*Declare the 'Table Type' based on the 'Line Type'

TYPES itab02_typ TYPE STARDARD TABLE OF lineOl_typ.

*Declare the table based on the 'Table Type'

DATA itab02 TYPE itab02_typ.

*Declare the Work Area to use with our Internal Table
DATA wa_itab02Z TYPE lineOl typ.

Here, the SELECT statement is used again. Since the line type only includes two fields, only
those two fields should be selected. Once they’re selected, INTO is used with the work
area specified as the area to populate. An APPEND statement is added to move the data
from the work area into the table itself. Finally, ENDSELECT is used:

SELECT surname dob FROM zemplovees
INTO wa_itabl2.
APPEND wa_itab0Z TO itabOZ.
ENDSELECT.

An array fetch can also be used to populate the internal table. Note that here you can still

use the * to select all of the records in zemployees, but as the internal table has only two
of these corresponding fields, the rest will just be ignored:

234

INTERNAL TABLES

SELECT * FROM zemployees
INTO COREESPONDING FIELDS OF TABLE itah(2.

Using Internal Tables One Line at a Time

Now you know how to fill internal tables with data, a look will be taken at how to use the
data in them line-by-line.

Internal tables are just stored in memory, so cannot be directly accessed, their contents
can only be read via the work area, using a loop. The way this is done is slightly different
from database tables and, rather than using SELECT and ENDSELECT, LOOP and ENDLOOP
are used instead.

First, tables using a header line. Add some new code to your program as follows. Begin the
LOOP and specify the internal table by adding “AT itab01”. Code is then added to achieve
the desired outcome and the loop is closed with ENDLOOP. For example:

LOOF AT itabOl.
WRITE: 7 itab0l-surname, itabOl-forename.

ERDLOOP.

If you execute code in debug mode, you will see that for each loop pass, the header line
(represented by the hat icon) is filled with data before being written to the output screen:

@ LOOP AT itabol.

= WRITE: / itab0l-surname, itab0l-forename.
ENDLOOP.
T 7 o
Intermnal table jicavol |, Type STANDARD Format E &=
1 |EMPLOYEE SURNAME FORENAME

& 10000002|JONES | AY

1 10000002 JONES | ANY

2 10000003 |MICHAELS | ANDREW

235

INTERNAL TABLES

Internal Tables 1

JONES AMT
MICHAELS ANDEEW
NICHOLS BRENDAN
HILLS ALICE
RORTHHORE PETER

Modify

Now a look will be taken at how records in the table can be changed with the MODIFY
statement. Using the code below, the IF statement will check whether an entry’s surname
matches the set value of JONES’. Where it does match, this will be updated to the new
value of ‘SMITH’ in the header line. The MODIFY statement will then update the internal
table itself with the new value. Note that the MODIFY statement here will not create a
brand new record, but will replace the existing JONES record in the table. If a MODIFY
statement is used in a loop, it is always the current line which is changed. This should not
be done if you are trying to modify key fields of an internal table that uses a unique key. If
the MODIFY statement is used outside of a loop, the record index number must be speci-
fied. The way in which the statement is used here can only be used in tables with index

tables or header lines:

LOOP AT itabOl.

IF itab0l-surname = 'JONES'.
itabh0l-surname = 'SMITH'.
MODIFY itab0l.

ENDIF.

ENDLOOP.

Describe and Insert
In the same loop, the DESCRIBE TABLE statement will be used. This statement can be used
to find out information about the content of an internal table, including the number of
records the table holds, the reserve memory space used, and the type of table it is. In
practice you normally only ever really see this being used to find out the first of these three
pieces of information though.

236

INTERNAL TABLES

Beneath the ENDIF, add the line of code “DESCRIBE TABLE itab01 LINES line_cnt.” The
LINES part of this statement is used to request the value of the number of lines contained
in the internal table, and ‘line_cnt” is a new variable (of type i) set up to hold this value.

Up until now, the APPEND statement has been used to add records to the table. This
automatically inserts the new record at the end of the table. If you want to add a record
somewhere in the middle, the INSERT statement should be used, along with the table in-
dex number, to specify the position where a new record is to be inserted. For example, if
you used the index number 10, the new record would appear between the 9" and 10™
records in the table.

The syntax used here is “INSERT itab01 INDEX (n)” where (n) is the index number where
you want to insert the new record. In the example below, (n) is represented by line_cnt,
so the new record will be inserted at the line matching the index number which corre-
sponds to the value of line_cnt. The new record will be inserted on the line before the last
line of the table:

LOOF AT itabOl.

IF itabll-surname = 'JORNES'.
itab0l-surname = 'SMITH'.
MODIFY itab0Ol.

ENDIF.

ENDLOOE.

DESCRIBE TABLE itabDl LINES line cnt.

INSERT itab0l INDEX line_cnt.

If you execute the code in debug mode, you will see the surname JONES is modified to
become SMITH. The DESCRIBE statement is then triggered and line_cnt given a value of 5.
Now, the last record in the table is that with the surname NORTHMORE, employee num-
ber 10000006, so once the loop completes, this is the record held in the header line. The
INSERT statement, then will add a copy of this record at the 5™ line of the table. Remem-
ber that, as this is a standard type table, duplicate records are allowed. Because you are in
debug mode you can alter the header record’s values can be manually altered in debug
mode, so a new, non-duplicate record can in fact be created, with the surname BLOGS and
employee number 10000007. The image below shows the header record and internal ta-
ble just before and after the INSERT statement is executed:

237

INTERNAL TABLES

Internal table [tab0l : Type 3TANDARD Format |E |@
2 ||[EMPLOYEE SUENAME FORENAME
& 10000007IBLOGS | PETER:
2 10000003 IMICHAELS | ANDRET
3 10000004 |NICHOLS | ERERD AN
4 10000005 IMILLS |ALICE =
5 10000006 |NORTHMORE | PETER:
Internd table C 3 Type STANDARD| Format [E |@
3 ||EMPLOYEE SURHAME FORENAME
& 100000071BLOGS | PETER.
3 1l00000041NICHOLS | ERERD AN
Bl 10000005 |IMILLS | ALTCE
5 10000007 1BLOGS | FETEE. —
& 10000006 | NORTHMORE | PETER - -
Read

The READ statement is another way in which you can access the records of an internal ta-
ble, allowing you to read specific individual records from the table. Given that these ex-
amples are using the old style method and as such using a header line, this record will be
sent to the header line and accessed from there.

The way that the internal table has been declared will affect the way in which a READ
statement’s code is written, bear this in mind. Depending on whether the table has a
unique key or not will also change how the READ statement is specified. For a standard
table without a unique key, the record’s index number is used:

H READ TABLE itah0l INDEX 5.
The READ statement is generally the fastest way you can access the records of an internal
table, and using the index number is the fastest way to use this statement. It can be up to

14 times faster than a table key. However, you do not always know the index number of
the record which is to be read. If you are using a table key, the syntax would be as follows:

238

INTERNAL TABLES

READ TAELE itab0l WITH EEY
employes = 10000007,
This can also be done with non-unique keys, but this can become problematic. For exam-
ple, if you used ‘surname’ as your table key and the table contained 3 surnames which
were the same, the system sequentially reads the records resulting in the first occurrence
be read.

This type of code, particularly with key fields, can also be used with sorted and hashed
tables, which contain unique key fields.

Delete Records

To delete records from an internal table, you simply use the DELETE statement. This can
be used to delete either individual records or groups of records from a table. The fastest
way of achieving this is by specifying a table index. Note this only applies to standard and
sorted tables as only these two types of tables have an index. The syntax is as follows:

DELETE itabh(l INDEX 5.

The header line is not used at all. The record to be deleted is directly accessed via its index
number.

This statement can also be used inside a loop:

LOOP AT itabOl.
IF itabOl-surname = 'SMITH'.
DELETE itab0l INDEX sy-index.
ENDIF.
ENDLOOE.

The code here will identify any record with the surname SMITH and delete it. As you do
not know the index number of SMITH beforehand, the system variable sy-index is used,
which is always set to the index number of the current loop, so when the SMITH record
appears, sy-index will match its index number and the record will be deleted.

239

INTERNAL TABLES

The DELETE statement should not be used without the INDEX addition. If used outside of a
loop result in a runtime error, causing the program to crash. Inside a loop, it must be pre-
sent to adhere to future releases of the ABAP syntax.

Another addition to the DELETE statement is the WHERE clause. There are times where
when you will not know the index number of the record you want to delete, so more code
will have to be added. The WHERE addition is useful here, and can be combined with
other logic to locate the record(s) which should be deleted. Using this, you must always be
as specific as possible, otherwise data which should not be deleted can be. The syntax
should look like this:

|| DELETE itah0]l WHERE surname = "3NITH'.

Note that if there are multiple records which match the logical expression, they will all be
deleted.

Sort Records

The statement used to sort records in an internal table is, unsurprisingly, SORT. The basic
syntax is very simple:

S0RT itab0l.

Without any additions, this will sort the records in ascending order by the table’s unique
key. This works for sorted and hashed tables. For a standard table, you must use the BY
addition to specify which fields to sort by:

30RT itab0l BY surname.

This would sort the table alphabetically in ascending order by the field SURNAME. Bear in
mind that SAP systems work with a wide variety of languages all at the same time, so if
you are sorting by language-specific criteria, AS TEXT should be added between the table
name and BY addition.

You are not limited to sorting just by one field; you can list up to 250 fields if desired. In
this example, FORENAME is added. Note that it is not necessary to separate these with
commas:

240

INTERNAL TABLES

S0RT itab0l AS TEXT BY surname forename,

Given the position of AS TEXT in the statement, this will be applied to all fields which are
specified. If you only wanted AS TEXT to apply to forename, it would be placed after the
forename:

|| S0RT itab0l BY surname forename AS TEXT.

By default, the system will sort records in ascending order. This can be changed to de-
scending as shown:

S0RT itab0]l DESCENDING AS TEXT BY surname forename.

Work Area Differences

Having been through the statements with which one can work with internal tables with a
header record, the old style, now the differences in using these methods with the new,
encouraged style of operating with a separate work area will be looked at

Loops

First, let’s look at the differences in reading data in a loop. Here, the loop will read each
record from the internal table and place each record into the work area instead of the
header line. Because the work area is completely separate from the internal table, the
work area you want to use within the loop must be specified. The INTO addition is used to
specify the work area the record is to be read into:

LOOF AT itab0Z INTO wa_itab02Z.
WEITE wa_itab0Z-surname.
ENDLOOE.

In this example the records will be read one record at a time into the work area
wa_itab02, then the contents of the surname field will be written to the output screen.

241

INTERNAL TABLES

Modify

Using the MODIFY statement with this kind of internal table the statement must specifi-
cally reference the work area. The example below shows our previous MODIFY statement
example altered to work with a work area:

LOOF AT itab02 INTO wa_itah02Z.
IF wa_itah02-surname = 'JONES'.
wa_ itablZ-surname = 'SMITH®.
HODIFY itab0Z FROM wa itah0Z.
ENDIF.
ERDLOOP.

Insert

When working with the INSERT statement with this type of internal table, nothing needs
to change to the DESCRIBE statement. The only change is to the INSERT statement. Here
the new record held in wa_itab02 is to be inserted INTO the internal table itab02:

DESCRIBE TABLE itab0Z LINE: line_cnt.
INSERT wa_itab0Z INTO itab0Z INDEX line_cnt.

Read
The READ statement again follows a similar logic, insisting that the work area is also refer-
enced in the code:

H RE&D TABLE itabh02 INDEX 5 INTO wa_itab0OZ.

FEAD TABLE iteb02 INTO wa_itab0z
WITH KEY surname = 'SMITH'.

Delete

Just as the DELETE statement does not require any reference to the header record to
work, nor does it require any reference to the work area. The statement deletes records
from the table directly by their index number or other key, so operates no differently at all
here.

242

INTERNAL TABLES

Delete a Table with a Header Line

When working with internal tables, you will often come upon situations where it is neces-
sary to delete all of the records in a table in one go, depending upon the specific task you
trying to complete. For example, if you fill an internal table in a high level loop, you will
want the table to be empty when it comes to the next iteration. This section will explain
how to delete internal tables and their contents, first for those with header lines, then for
those with work areas.

There is a certain sequence of tasks you should adhere to when deleting the contents of
an internal table with a header line. First, you should ensure the header line is clear, then
that the body of the table is clear.

CLEAR

To do the first of these tasks, use the CLEAR statement, followed by the table name. This
will clear out the header line only, and set the header-line fields to their initial value. To
clear the body of the table, the statement is used again, only this time followed by [], de-
leting all of the records in the table itself:

CLEAR itab0l,
CLEAR itab0l[].

REFRESH

Alternatively, the REFRESH statement can be used. This will clear all records from the ta-
ble, but you must bear in mind that it does not clear the header record, which will still
contain values:

“ FEFEESH irab0l.

FREE

You could also use the FREE statement, with the same syntax as REFRESH. This statement
not only clears out the internal table, but also frees up the memory which it was using. It
does not mean the table ceases to exist entirely, but no longer is operating in memory.
With this statement, like REFRESH, the header line is unaffected, so the first CLEAR state-
ment must always be used in conjunction with both of these:

H FEEE 1irtab0l.

243

INTERNAL TABLES

Delete a Table with a Work Area

To delete internal tables which are using work areas, similar methods are used. However,
as the work area is an entirely different structure, any code written which will affect the
internal table will not affect the work area, and vice versa.

The CLEAR statement above, when used on a table without a header line, will clear the
whole contents of the table without needing to add the []. Remember that another CLEAR
statement must be used to empty the work area. The same applies to the REFRESH and
FREE statements. The syntax above will work, and a further CLEAR statement must be
used to empty the work area. In the examples below, assume itab01 and wa_itab01 refer
to the newer style internal table and its work area:

CLEAR 1tab0l.
CLEAR wa_itah0l.

BEFEREZH itab0l,
CLEAR wa_itabOl.

FREE itabiOl.
CLEAR wa_itah0l.

244

MODULARIZING PROGRAMS

Chapter 13 — Modularizing Programs

Introduction

As has been discussed before, it is good practice when using SAP to keep your programs as
self-contained and easy to read as possible. Try to split large, complicated tasks up into
smaller, simpler ones by placing each task in its own separate, individual module which
the developer can concentrate on without other distractions. Modularizing your code al-
lows single tasks to be focussed upon one at a time, without the distraction and confusion
which can be caused if the code you are working with is in the middle of a large, compli-
cated structure. Doing this makes the program much easier to work with and debug. Once
a small, modularized section of code is complete, debugged and so on, it does not subse-
qguently have to be returned to, meaning the developer can then move on and focus on
other issues.

Creating individual source code modules also prevents one from having to repeatedly
write the same statements again and again, which in turn makes the code easier to read
and understand for anyone coming to it for the first time. This is also useful when it comes
to support. Anyone later having to support the program will again find the code much
more comprehensible if it is written this way.

It is important to concentrate on the design of a program. Rather than starting to code a
solution straight away, a solution should be mapped out, using pseudo-code or flow-
charts for example. Only when the design makes sense should the coding exercise begin.
Having a solution design also helps when modularizing a program, because this allows you
to see how the program can be split up into separate pieces, allowing you to then focus on
the individual pieces of development one piece at a time.

In the chapter covering selection screens, modularization was hinted at with the use of
processing blocks. However, modularization in your own programs is not just limited to
processing blocks. The SAP system allows for a number of techniques to be used to break
a program up into smaller, more manageable sections of code.

This chapter will look at the tools SAP provides for achieving this.

245

MODULARIZING PROGRAMS

Includes

When talking about modularization, what we are really talking about is taking a sequence
of ABAP statements and placing them in their own, separate module. We can then ‘call’
this code module from our program.

Here, some code which has been used previously will be modularized. Below is the code
for the second internal table which was created, the one with a work area, followed by
some logic which will perform tasks involving the internal table:

REPORT z_mod 1
TABLES: zemployees.,

*Declare a Line Type

TYPES: BEGIN OF lineOl_typ,
surname LIEKE zemployees-surname,
dob LIRE zemployees-dob,
END OF line0l_typ.

*Declare the 'Table Type' based on the 'Line Type'
TYPES itab02_typ TYPE STANDARD TABLE OF line0l typ.

*Declare the table based on the 'Table Type'
DATA itab02 TYPE itab02_typ.

*Declare the Work Area to use with our Internal Table
DATA wa_itab02 TYPE lineOl_typ.

DATA line_cnt TYPE 1.

RN RN NN N IR SN AN ENRARNENENRRNENES

SELECT * FROM zemployees
INTO CORRESPONDING FIELDS OF TABLE itab02.

LOOP AT itab02 INTO wa_itab02.
WRITE wa_itab0Z-surname.
ERDLOOP.

CLEAR: itab02, wa_itab02.

LOOP AT itab02 INTO wa_itab02.
IF wa_itab02-surname = 'JONES'.
wa_itab0Z-surname = 'SMITH'.
MODIFY itab02 FROM wa_itab02.
ENDIF.
EEDLOOP.

DESCRIBE TABLE itab02 LINES line cnt.
INSERT wa_itab02 INTO itab02 INDEX line cnt.

READ TABLE itab02Z INDEX S INTO wa_itab02. I

READ TABLE itab02 INTO wa_itab02
WITH KEY surname = 'SMITH'.

246

MODULARIZING PROGRAMS

First, we will look at INCLUDE programs. INCLUDE’s are made available globally within an
SAP system and their sole purpose is modularizing code. They are simple to define and
accept no parameters. Below the REPORT statement, fill in the statement for declaring an
include. Type INCLUDE and then define a name, here “Z_EMPLOYEE_DEFINITIONS”:

REPORT =z mod 1
INCLUDE Z_EMPLOYEE DEFINITIONS.

TAELES: zemployees.

This statement is telling the program to include the INCLUDE program within our original
program. There are two ways of creating this new INCLUDE program. You can type the
name into the ABAP editor’s initial screen and select the ‘Attributes’ radio button, fol-
lowed by ‘Create’. Then, when the window appears asking what kind of program this is,
select ‘INCLUDE program’:

-

Type) =l
Statis [Executable program I~
e INCLUDE progra

Application Module pool & 1
Authorization Group Function group

Subroutine pool

Interface pool
v Unicode checks active

The second method is by using forward navigation. In the code window, double-click
Z_EMPLOYEE_DEFINITIONS and select ‘Yes’ to create the new object. Save as ‘Local ob-
ject’ as before, and then you will be presented with a new, blank coding screen where the
INCLUDE program code can be typed/inserted:

247

MODULARIZING PROGRAMS

ABAP Editor: Change Include Z_EMPLOYEE_DEFINITIONS
& YR H g @ SABT @ Pattem Pretty Printer

Include Z _EMPLOYEE DEFINITIONS Inactive (revised)

=B =))5 BE)
A‘.‘__-____-___--_-__--___-__-__-_--___-______-__-_-________-__-__-______3
*& Include Z EMPLOYEE DEFINITIONS %
) YR P ——— = e et b et o . 2 S —— SR —— S p—— *

Remember, the INCLUDE program is a separate file on the SAP system so can be included
in any other program. The INCLUDE program must be activated itself, and when you acti-
vate any program that includes it, it will always check to see if the INCLUDE program is
active too. If not, error messages will appear. A simple way to activate both at once is to
select both in the menu offered when activating the main program:

[E Inactive Objects for BCUSER

Transportable ohjects . Local ohjects |
Object name
C | Ohj... Obj. name User i
' EEF'S :z_:mmm_nxnmnnns BCUSER -
REPS Z_EMPLOYEE_LIST 03 BCUSER ind
| REPS Z_MoD_l BCUSER

In the main program, comment out the section where the line type is defined, and copy &
paste it into the INCLUDE program:

248

MODULARIZING PROGRAMS

IKCLUDE Z_EHPLOYEE_DEFI!IITtOBIS.
TABLES: zemployees.

**Declare a Line Type
*TYPES: BEGIN OF lineOl typ,

“ surname LIKE zemployees-surname,
¥ dob LIKE zemployees-dob,
END OF lineOl ctyp.
k' Include Z_ENPLOYEE DEFINITIONS

*Declare a Line Type

TYPES: BEGIN OF line0l_typ,
surname LIEKE zemployees-surname,
daob LIKE zemployees-dob,
END OF line0l_typ.

Because the INCLUDE program has been declared in the main program above, the pro-
gram will continue to work as normal. This is an example of a way in which code can be
effectively outsourced to an INCLUDE program, removing that code from service in the
main program and hence making that program less densely populated with code. This
does not have to be used only for data declarations as in this case. It is commonly used for
sections of programs which involve program logic too.

Procedures

If you want to split programs into separate functional modules, procedures can be used.
These are processing blocks which are called from the main ABAP program, and come in
the form of sub-routines, sub-programs, and function modules.

Sub-routines and sub-programs are mainly used for local modularization of code, mean-
ing small, modular, self-contained units of code called from the program in which they are
defined. These can then, if necessary, be used many times in the program without having
to be typed out repeatedly. Function modules, on the other hand, allow you to create
modular blocks of code which are held separately from an ABAP program and can be
called from any other program.

Sub-routines are local, and function modules are global, and both types of procedure are
commonly used in SAP systems. The latter, though, are probably the more widely used of

249

MODULARIZING PROGRAMS

the two. Function modules can be used to encapsulate all of the processing logic used
within the business system, and SAP has ensured that they can be used both by their own
developers and SAP’s customers.

INCLUDE programs cannot accept any parameters; procedures differ here, and have an
interface for transferring data from the calling program to the procedure itself. Because
data can be passed into a procedure, this means that you can define data definitions
within the procedure itself which are only available to that procedure.

Sub-Routines

One of the great benefits of using sub-routines is that it helps to modularize program code
inside the actual program, giving the program structure.

To create a sub-routine, forward navigation is used. Copy, and then comment out, the ar-
ray fetch SELECT statement from the internal table code above:

SELECT * FROM zemployees
INTO COREESPONDING FIELDS OF TAELE itabDz.

Above the commented-out section, use the statement PERFORM. This statement is used
to perform a sub-routine. Then a name for the sub-routine is added. Here, since this code
fills the itab02 internal table, call the sub-routine “itab02_fill” as shown:

PERFORH itab0Z fill.

"IELECT * FROM zemployees
INTO CORRESPONDING FIELDS OF TABLE itahD2.

Double-click the statement then to use forward navigation and create the sub-routine.
Answer ‘Yes’ to the dialog box and a window appears asking where the sub-routine is to
be created. A choice is offered between the main program, the INCLUDE program and a
new INCLUDE program which can be created. Select the main program here. Once this is
done, code block starting with ‘form’ and ending with ‘endform.’ Is created located at the
end of your program, where the code for the sub-routine can be filled in. Paste in the code
for the array fetch, and the sub-routine is created:

250

MODULARIZING PROGRAMS

7f_:' ___ w
& Form itabD2 fill
a-._r ___ w
" text
| T R e ap———— N

> pl EXT

pa BT

* *

form itab0Z_fill .

SELECT * FROM zemployees
INTO COREESPONDING FIELDS OF TAEBLE itab02.

endform. " itab0Z £ill

When the PERFORM statement is reached as the program executes, the sub-routine cre-
ated will be triggered, meaning that the array fetch is performed in exactly the same way
as previously. Once ‘endform.’ is reached, processing returns to the next statement fol-
lowing PERFORM and continues as normal, terminating at the end. Though the sub-
routine does appear at the bottom of the code, the system can identify it as a sub-routine
and hence it will not be executed again.

Up until now, only global variables have been discussed. These are variables which are
defined as in the program itself, usually at the top of the program and, in this instance, the
INCLUDE program. These variables, including internal tables and so on, can be accessed
throughout the program. If variables are declared only in sub-routines, however, these are
considered local variables. These can only be accessed within the single sub-routine where
they are declared. Once control passes back to the main body of the program, local vari-
ables can no longer be referenced.

Given that these variables only have to be declared within sub-routines, rather than the
whole program, memory usage is kept to a minimum. Additionally, these can be useful in
helping keep everything self-contained and modularized. As mentioned previously, sub-
routines have an interface, and these local variables can be used in the interface.

To declare a local variable, one simply uses the DATA statement as normal within the sub-
routine. Declare one of these named “zempl”, which is LIKE zemployees-surname. This
new variable can now only be referenced by other code which appears in the sub-routine,
between form and endform. You can also declare a variable to be used in the interface. In

251

MODULARIZING PROGRAMS

doing this, the system is being told that data will be transferred to the sub-routine data
interface.

Create code for a second sub-routine, called “itab_02_fill_again” and above this create 2
new DATA fields, as shown in the example below, telling the new sub-routine to use the
new data fields. Then use forward navigation to create this sub-routine:

DATA =z _fieldl like zemployees-Surname.
DATAE = fieldZ like zemployees-forename.

PERFORN itabOZ fill.

perfnr_:rl itab02_fill_again USING z_fieldl =_field:Z.

texc

* -->P_Z_FIELDl text

2 -->»P_Z_FIELDZ text

form itab02_fill again using p_z_fieldl
p_z_field2.

endforms. " itab02 fill again

Note the difference in how the new sub-routine appears. This form has now been gener-
ated including two fields which will then be used in the interface. It is advisable here to
rename the fields in the sub-routine so you know what they refer to:

form itab0zZ fill again using p_Zaurname
p_zforensame.

Notice that there is no data type for these fields, since they are taken from the fields ref-
erenced in the PERFORM statement, however, they will take on the same properties as
those fields. Add some new code to the form as shown below. The values of p_zsurname
and p_zforename will be written, then the value of p_zsurname changed to ‘abcde’:

252

MODULARIZING PROGRAMS

form itab0Z fill again using p_ZSurname
p_zforensme,

write / p_zsurname.
write f p_zforename.

p_zsurnane = 'abcde’.

endform. " itab02 fill again

Ensure these fields hold some data by giving z_field1 and z_field2 values in the main pro-
gram:

z_fieldl
z_fieldz

' BHDEEWS ' .
PEUSAN' .

perform itah02 fill again USING = fieldl = fieldZ.

When the PERFORM statement is executed, these values will be passed through to the
fields in the sub-routine. Add a breakpoint above this and run the program can be run in
debug mode.

You can see z_field1 and z_field2 are filled with their initial values:

Tz_fieldl TanprEws a7

z field2 STSAN g|£|

Next, the sub-routine is entered and the values of these fields are passed in via the inter-
face, so that the local variables here take on the same values as those in the main pro-

gram:
|E||_Field names 1-4 - |8 Field contents
|_ | MNDREWS _|£ |
z_fieldz SUSAN ®|2|
P_ZSurnamne ANDEREWS _I:|
p_zforename SUSAN %I£|

The two WRITE statements are then executed, followed by the change in value for
p_zsurname. Because the field is used in the interface, the global variable, z_field1’s value
also changes:

253

MODULARIZING PROGRAMS

| T [Field names 1-a|v|Q) Field contents
B :ic.o Jabcae Q2|
z_field2 554N %]ﬂ
p_Zsurname abcde %]£|
p_zforename SUSAN %]{'

When using fields in the interface, it is important to keep this in mind. Any fields attached
to the USING addition that are changed in the sub-routine will also be changed in the pro-
gram.

Passing Tables

Sub-routines are not limited to only passing individual fields. Internal tables can also be
passed, as well as a combination of both fields and tables. When passing fields though,
one must always get the sequence of field names correct, as it is the sequence which will
determine which field is passed to the interface variable of the form.

Create a new sub-routine called itab02_write. Then, use the TABLES addition to specify
the table to be passed, here itab02:

H PERFORH itab0Z write TABLES itab0Z.

Removing any unnecessary code, the form will look like this:

form itab0Z write tables p_itablZ structure.

endform. " itab0Z write

Using the TABLES addition, the program ensures that the contents of the internal table are
transferred to the subroutine and stored in the internal table p_itab_02. Once this sub-
routine is processed, the contents of the local internal table are then passed back to the
global internal table.

254

MODULARIZING PROGRAMS

Note that this method is for a table without a header line. If this code was used with an

old-style internal table, only the header line would be passed to the table. To pass the full

table, you need to add [] at the end of the statement.

When an internal table is passed into a sub-routine, the local internal table is always de-

clared with a header line. Write some code and then debug the program to see this. The

code below will loop through the records of the internal table, sending the contents to a

temporary work area and then writing the contents of the surname field to the output

screen:

FOREM itabDZ write TABLES

ENDFOEH.

p_itabDz,
DATA wa_tmp TYFE linell typ.
LOOF AT p_itab0Z INTO wa_tmp.

WEITE wa_tmp-surname.

ENDLOOE.

" 1tab0Z wrice

When analysed in debug mode, the itab02 table does not have a header record, but

p_itab02 does:

- =
Internd table Jlicabo: | Type sTANDARD| Format [E| ||
1 || JURNANE DOl
‘ 1 JONES 119691118 ‘
. =
Internal table | Type sTAWDARD Format [E| [
1 || JURNANE DOl
3 | 00000000 -
1 JONES 119691118

Still, since a new work area was created for the LOOP statement to follow, the header re-

cord becomes irrelevant.

Passing Tables and Fields Together

Now, a combination of fields and tables will be passed into a subroutine at the same time.
Create another PERFORM statement, called itab02_multi. Retain the TABLES statement,
but then add the USING statement afterwards:

255

MODULARIZING PROGRAMS

H PERFORM itab0Z nmlti TARLES itab0:2 USING z_fieldl = _fieldz.

Use forward navigation to generate the form.

form itab0Z multi tablez p itab02 structure < itablZ #local# >
"Insert correct name for <...>
using p_z_fieldl
p_z field2.

You can then use write code to interact with both fields and the table.

Sub-Routines - External Programs

Sub-routines were initially designed for modularizing and structuring a program, but they
can be extended so that they can be called externally from other programs. Generally to
do this, though, one should create function modules instead.

If you do want to create external sub-routines, however, this is possible. There are two
ways in which a sub-routine can be called from an external program. The first of these is
the one which should really always be used if doing this, as this is compatible with the use
of ABAP objects.

If you want to call a sub-routine called ‘sub_1’, held in a program called ‘zemployee_hire’,
the code would look like this. Note that additions can still be used with this method:

" PERFORM sub_l IN FROGRAM zemployee hire USING z_fieldl z_fieldZ.

The difference here is that the sub-routine is being called from a separate program in the
SAP system.

The second form is very similar, and works the same with additions and so on, the pro-
gram is just included in brackets. Keep in mind though this form of the code cannot be
used with ABAP objects:

" PERFOEM sub] (zemployee hire) TABLES itab02 UIING = fieldl =z fieldz.

Calling external sub-routines is not common practice, sub-routines tend to stay internal to
the program and where you want to call sub-routines in external programs, this is usually
done via function modules.

256

MODULARIZING PROGRAMS

Function Modules

Function modules make up a major part of an SAP system, because for years SAP have
modularized code using them, allowing for code re-use, first by themselves and their de-
velopers, then by customers.

Function modules refer to specific procedures which are defined in function groups, and
can be called from any other ABAP program. The function group acts as a kind of container
for a number of function modules which would logically belong together, for example, the
function modules for an HR payroll system would be put together into a function group.
SAP systems have thousands of function modules available for use in programs, so if you
search around the system it will often be possible to find pre-existing modules for the
tasks you may be asked to code.

To look at how to create function modules, the function builder must be looked at. This is
found via the menu at the very beginning of the system, via the SAP menu = Tools 2
ABAP Workbench - Development. There one will find the function builder, with transac-
tion code SE37:

257

SAP Easy Access
5™ & &aother menu

* O Favorites
> &Y SAP menu
» (3 Office
» (3 Information Systemns
* &3 Tooks
~ 3 ABAP Workbench
v (3 overview
~ &3 Development
-) SE11 - ABAP Dictionary
+ 2 D11 - Data Modeler
» (Juser Interface
+) SE38 - ABAP Editor
- T SE37 - Function Bulq‘gz
+ © SE24 - Class Bulder
«) SE33 - Context Bulder

T R

MODULARIZING PROGRAMS

v 4~ [Bcreaterde PEy

*» (3 Programming Environment
+) SWO1 - Business Object Builder

v O workflow

» (O other Tools
» (O Test
» (3 utilities

Before diving into an example of how to use a function module we need look at how func-

tion modules are put together, so as to understand how to use them in a program.

Function Modules — Components

The initial screen of the function builder appears like this:

Function Builder: Initial Screen
go » @S H O OB Reasion

2
Function module J

3
=

G | @

Display

Change ‘ [m] Create]

258

MODULARIZING PROGRAMS

Rather than typing the full name here, part of a function module name will be typed with
a wild card character to demonstrate the way function modules can be searched for. Type
amount and then press the F4 key. The results of the search will then be displayed in a
new window:

Function moduls Famopunt®

Sy Diisplay |:§’° Change | O Create

[E Repasitary Info System: Function modules Find (12 Hits)

Function group Function group short text

Hame of function module Short text for function module

FOL17 Comversion of amounts to words utility
SPELL_RMOUNT Convert rumbers and figures in words
FFOl

FIMA_COND_DETATL_AMOUNT CHECK
FINA COND DETATL AMOUNT PAT
FINA COND DETAIL AMOUNT PEO

FFDS
FIMA_ AMOUNT DISCOUNT

Is0C

CURRENCY AMOUNT BAPI_TO_SAP
CURRENCY_AMOUNT_IDOC_TO_SAP
CURRENCY AMOUNT_SAP_TO_BAPI
CURRENCY AMOUNT SAP_TO_IDOC

RHALE_CONVERT
RH_ALE_CURR_AMOUNT_IDOC_T0_SAP
FH_ALE_CURR_AMOUNT_SAP_TO_IDOC

SFCC
ALV_CORRECT CURR_AMOUNTS

The function modules are displayed in the lines with a blue background and their function
groups in the pink lines above. If you would like to look further at the function group 1SOC,
the Object Navigator screen (se80) can be used. This screen can in fact be used to navigate
many objects held in the SAP system, not only function modules but programs and so on,
using the menus on the left hand side of the screen. Here, we can see a list of function
modules (and other objects) held in the function group I1SOC:

259

MODULARIZING PROGRAMS

Function group v
fisoc w | &
=] [=al&E) Q) (=)
Objact Narme
~ Q1soc -
&3 Function modules v

* COUNTRY_CODE_ISO_TO_SaAP

* COUNTRY_CODE_SAP_TO_ISO

* CURRENCY_AMOUNT_BAPI_TO_SAP

* CURRENCY_AMOUNT_IDOC_TO_SAP

* CURRENCY_AMOUNT_SAP_TO_BAPI

* CURRENCY_AMOUNT_SAP_TO_IDOC

* CURRENCY_CODE_ISO_TO_SAP

* CURRENCY_CODE_SAP_TO_ISO

* CURRENCY_CONVERTING_FACTOR

* ISO_TO_SAP_CURRENCY _CODE

* ISO_TO_SAP_MEASURE_UNIT_CODE

* LANGUAGE_CODE_ISO_TO_SAP

* LANGUAGE_CODE_SAP_TO_ISO

* SAP_TO_ISO_CURRENCY _CODE

- SAP_TO_ISO_MEASURE_UNIT CODE =
» (3 Dictionary structures = | 1

The four which showed up in the *amount* search are present, along with a number of
others. If double-click any of these function modules, the code for that function module
will appear on screen to the right of the menu:

260

‘ Es Repository Browser
[&Remsitory Infosystem

@ Tag Library

[Transpart Organizer

Functiongroup |
fisoc v | e
(e l)=] [=]a)(&)E.)) (=)

¥ (1soc
* &3 Function modules
COUNTRY_CODE_ISO_TO_SAP
COUNTRY_CODE_SAP_TO_ISO
CURRENCY_AMOUNT_BAPI_TO_SAP
CURRENCY_AMOUNT _IDOC_TO_SAP
CURRENCY_AMOUNT_SAP_TO_BAPI
CURRENCY_AMOUNT_SAP_TO_IDOC
CURRENCY_CODE_ISO_TO_SAP
CURRENCY_CODE_SAP_TO_ISO
CURRENCY _CONVERTING_FACTOR
1SO_TO_SAP_CURRENCY_CODE
150_TO_SAP_MEASURE_UNIT_CODE
LANGUAGE_CODE_ISO_TO_S&P
LANGUAGE_CODE_S&P_TO_ISO

.

.

.

.

MODULARIZING PROGRAMS

e e s AT A emaawan s mase s aar e

Attributes « Import © Export < Changing | Tables | E

REE) B S B

[FUNCTION CURRENCY AMOURT SAP_TO_IDOC.

T o e e e e e i . e et) e sV e i e i 0 . . i i
#"#"Lokale Schnittstelle:

e IMPORTING

i VALUE (CURRENCY) LIKE TCURC-WAERS
e VALUE (SAP_AMOUNT)

e EXPORTING

Ll VALUE (IDOC_AMOUNT)

STATICS: STATIC_CURRENCY LIKE TCURC-WAERS,
FACTOR TYPE IS0C_FACTOR.

DATA: DECO(16) TYPE P DECIMALS O,
DEC1{16) TYPE P DECIMALS 1,
DECZ(16) TYPE P DECIMALS 2,
DEC3(16) TYPE P DECIMALS 3,
DEC4(16) TYPE P DECIMALS 4,
DECS(16) TYPE P DECIMALS 5.

IF CURRENCY IS INITIAL.
IDOC_AMOUNT = SAP_AMOUNT.
EXIT.

ENDIF.

Return back to the function builder screen, do the *amount* search again and this time
select the function module SPELL_AMOUNT. Double-click it and choose Display.

The code will then appear in a screen similar to that of the ABAP editor. There are, how-

ever, a series of tabs along the top which will now be looked at.

261

MODULARIZING PROGRAMS

Function Builder: Display SPELL_AMOUNT
& =p ? 3 @ ‘a | @ é‘ ﬁ% E] H & rattern @ C_f:"o:.'}:l jﬁ»‘;[:l.;i.

Function modile 'SPELL_AMOUNT | Active
Attributes | Import | Export © Changing -~ Tables - Exceptions

ROE B 65 DR

FUNCTION spell_amount.

v ok e e o s Sl iy s s s Yo el s iy s s Pt i . e s s e b i on

*"Lokale Schnittstelle:

e IMPORTING

o AMOUNT DEFAULT O

r CURRENCY LIKE SY-WAERS DEFAULT SPACE

LA FILLER DEFAULT SPACE

nee LANGUAGE LIKE SY-LANGU DEFAULT SY-LANGU

L i EXPORTING

b IN_WORDS LIKE SPELL STRUCTURE SPELL

L i EXCEPTIONS

L3 NOT_FOUND

L4 TOO_LARGE

B e e e e e e e etk s B e S o T
Attributes Tab

This shows the function group and some descriptive text for the function module, as well
as some options for the function module’s processing type, plus some general data.

Import Tab
This lists the fields which will be used in the data interface which are passed into the func-
tion module from the calling program. These fields are then used by the function module

code:

=
Function modle |SPELL_AMOTNT | Active

Attributes Import | Export © Changing ~ Tables Exceptions ~ Source code

¥[ofF EE]

Parameter name Ty... Referencetype Default value 0... P... | Short text

AMOUNT D V¥ smountfnumber that isfare to be coverted
CURRENCY LIFE SY-TWAERS SPACE ¥ & Currency for amounts, for number SPACE
FILLER SPACE W Y] Flller with which the output field is entered
LANGUAGE LIEE SY-LANGU SY-LANGU «| | Language indicator for comversion in words

]

262

MODULARIZING PROGRAMS

Take note of the different column labels. The fifth column, with a checkbox, is labelled
‘Optional’, meaning that these fields do not have to be passed into the function module
by the calling program. More often than not though, there will be at least one mandatory
field.

Export Tab
This specifies the fields which are sent back to the calling program once the function mod-
ule’s code has been processed:

r g
LFunctlon module J SPELL_AMOUNT Active

Attributes | Import Emt[\\i‘; Changing Tables - Exceptions © Source code

T l",':] — I/
P D Y (™

| Parameter name Type spec, Reference type Pass v... | Short text Long t...

iIN_I-IORDS LIKE SPELL . Feld string with amount/number and ..
‘ —
Changing Tab

This lists fields which can be changed by the function module.

Tables Tab

Like sub-routines, with function modules you are not restricted to only passing in fields,
but can also pass in internal tables.

Exceptions Tab

This tab lists exception information which can be passed back to the calling program,
which indicate whether the function module was executed successfully or not. This is
where specific error messages for can be defined to identify any specific errors or warn-
ings that occur during code execution that need to be passed back to the calling program
to allow the programmer take the necessary course of action.

[Fur'u:tlon module jSPELL_ﬂHﬂU}IT Artive
Attributes © Import © Bsport - Changing -~ Tables . Exceptions r\t Source code
Wy
¥ D | :
Exception Shart text longtxt | [0
OT_FOUND Argurment was not found in TO152 =
00_LARGE Arnount is too large for baing converted b

263

MODULARIZING PROGRAMS

Source Code Tab

The final tab is the source code itself for the function module, which appears automati-
cally when one opens it from the function builder screen. Here, you can examine the code
in depth so as to determine what exactly the function module is doing.

With pre-existing function modules you generally do not even have to look at this, as you
should know what data the function module is supposed to send back.

The function module in this example converts numeric figures into words, so there is little
need to examine the code in depth if one already knows what the output is to be.

Function Module Testing

As Function Modules are created as separate objects, there are tools you can use to test
function modules without having to write the code to call them. Just as programs can be
tested and their output checked, you can do exactly the same with function modules. This
is done with the F8 key or the same Test/Execute icon found in your own programs. In
fact, you don’t even have to be within the function module to do test it out. It can be done
from the initial SE37 screen once the module’s name appears in the appropriate field:

Function Builder: Initial Screen

g @(:f‘ B ©1BD Reassin

Function module SPELL_AMOUNT
G Oply |2 change |[D create

Test out the function module using the Test button as shown above.

264

MODULARIZING PROGRAMS

Test Function Module: Initial Screen

@® @ Dpebugaing Test data drectory

Test for function group FO17
Function module rigELL_MOUNT
Upper/lower case)
Import parameters Value
ANOUNT 0
CURRENCY
FILLER
LANGUAGE E

As all fields are optional, this can then be executed without inputting any data.

Test for function groug FO17
Function module SPELL_AMOUNT

Upper/lower case |

Runtime: 12,088 Microseconds
Import parameters Value
AMOUNT 0
CURRENCY
FILLER
LANGUAGE E
Export parameters Value
IN_WORDS [E 000000000000000000 O ZERO

Since the amount in the import parameters was 0, the export parameters then read ZERO.
If you click the small button in the Value column of the export parameters, the results are
broken into their individual export fields.

265

MODULARIZING PROGRAMS

Structure Editor: Display IN_WORDS from Entry

aa M 4 » M EHcolumn Metadata

-

NUMBER DEC | CUR | WORD

000000000000000 (000 O |ZERO

The number input was 0, the decimal value was 0 and a currency was not specified, so the
WORD output is simply ZERO.

Let’s run the test again but this time enter some data into the AMOUNT field and CUR-
RENCY field. Then execute the test again.

Import parameters Value
ANDUNT 123456
CURRENCYT
FILLER
LANGITAGE E
Import parameters Value
AMOUNT 123456
CURRENCY
FILLER
LANGUAGE E
Export parameters Value
IN_WORDS |E 000000000123456000 0 ONE HUNDRED TWENTY-THREE THOUSAND FOUR HUNDRED FIFTY-3IX
Import parameters Yalue
AMOTNT 123456
CURRENCY GEF
FILLER
LANGITAGE E

266

MODULARIZING PROGRAMS

Export parameters Yalue

IN WORDS RDDDDODDDDODIZFL&SD Z ONE THOUSAND TWO HUNDRED THIRTY-FOUR
AW

This output may look odd, but when the button is pressed you will see that, as GBP has 2
decimals, the value 56 has been included in the decimals column rather than the number
column:

NUMBER DEC | CUR | WORD

000000000001234| 560

(V]

ONE THOUSAND TWO HUNDRED THIRTY-FOUR

If you were to select a currency which does not use decimals, the full number would ap-
pear.

The ability to test function modules in this way is a great time saver for the programmer,
as it allows you to confirm whether a function module will complete the tasks you want
before generating the code to use it in your program.

Function Modules - Coding

Now we have successfully tested the function module and know what it does, let’s see
how we would call it from an ABAP program.

In SE38, create a new program called Z_MOD_2. Enter some code so that a parameter can
be set up where a value can be entered:

REPORT Z_MOD 2

SJELECTION-3CREEN BEGIN OF LINE.
SELECTION-3CREEN COMMENT 1(15) text-001.
PARAMETER mytium Type 1.
SELECTION-5CREEN END OF LINE.

(The text element text-001 here reads ‘Enter a Value’)

267

MODULARIZING PROGRAMS

Z_MOD_2
o

Ernter a WalLie

==

Now a value can be entered into the selection screen, the value can be passed on to the
function module. To write the code for this, the ‘Pattern’ button can be used (also
CTRL+F6). It is advisable to always use this as it returns all the variables you need to use
automatically. Once this is clicked, a window appears where CALL FUNCTION is the first
option in a list. In the text box, enter “spell_amount”, the function module’s name, and
click the continue button:

[Ins. statement

#)CALL FUMCTION spell amount
AARAP Ohjects pattems
_IMESSAGE 1D Cat E Mumbear
SELECT ™ FROM
IPERFORM
T AUTHORITY -CHECK
WRITE
CASE for status
_IStructured data object
(®)with fields from structure
with TYPE for struct
CALL DIALOG

Other pattern

ABAP code is then generated automatically:

268

MODULARIZING PROGRAMS

CALL FUNCTION 'SPELL_AMOUNT'

* EXPORTING
* AMOUNT =0

* CURRENCY =1

* FILLER =1

* LANGUAGE = SY-LANGU
* IMPORTING

" IN_WORDS

* EXCEPTIONS

* NOT_FOUND =]

* TOO LARGE = 2

* OTHERS =3

IF sy-subrc <> 0.
* MESSAGE ID SY-MSGID TYPE §°

WITH 3Y-M3GV

ERDIF.

Note that a large amount of the code is initially commented out. This is because all of the
fields in the function module spell_amount are optional. Mandatory fields would not be
commented out. The comment character should be removed if that field is then to be
used. Here, only the AMOUNT field will be imported to the function module.

Note the position of the period between the CALL FUNCTION statement, its additions and
the IF statement below. It appears entirely on its own line. It appears there as the system
does not know how much of the initially commented out code is to be used.

The IF statement was also included automatically so as to follow best practices expecting
the programmer to and check whether the function module was executed successfully. As
has been discussed before, if sy-subrc does not equal zero, there is generally a problem of
some kind, so a message can be included to indicate this. Here, depending on the prob-
lem, it will be filled with one of the numbers defined in the EXCEPTIONS part of the func-
tion module.

Enhance the IF statement to include a code to WRITE a message to the screen to say “‘The
function module returned a value of: ‘, sy-subrc.”, then add the ELSE addition, so as to
write the correct result out when the function module is successful. This should then read
“WRITE: ‘The amount in words is: *” Here, a new variable must be set up to hold the value
returned from the function module. Call this “result”.

269

MODULARIZING PROGRAMS

The variable which the function module returns is called IN_WORDS, so set up the corre-
sponding variable in the program called result. Use forward navigation to check the data
type and length of IN_WORDS so that result can be set up to match. When you do this you
will see that IN_WORDS is defined using the LIKE statement to refer to a structure called
SPELL.

|

Attributes -“Impc't ~ Export | Changvinq Tables

= I
{- o jLSe

‘ Parameter name Type spec. Reference type
IN WORDS LIKE SPELL

The same can then be used for the new “result” variable in the main program. Use a DATA
statement to declare “result” LIKE the spell structure. As result is defined LIKE a structure
with a mix of data types, it is unlikely that the WRITE statement will process it correctly. If
you try to use this a syntax error will appear:

el 2]l E)

Syntax error
Description Ft oo Type
Prograrm £_MoOD_2 35 @aco

“RESLLT" cannot be converted to a character-type field.
P

Remember that when the function module was tested? What was returned was not in fact
only a character field, but a series of numbers as well. If you scroll to the far right of the
test results screen you would see several more fields were present.

This means you need to look at the structure of SPELL, and find the component which ap-
plies to IN_WORDS:

270

MODULARIZING PROGRAMS

Structure |SPELL | Active
Short text [Transfer structure for amounts rendered in words

. Atrbutes /Components | Entry hepjcheck | Cutency/auantity fields

¥ [BR EE [BFEEa] L8] schhee | suitin type 1720
~ Component R... Component type DTyp Len... Dec... Short text
NUMBER | IN NUMBERS NUMC 15 0Whole digits of the amount converted
DECIMAL | IN_DECI NUMC 3 0Decimal places of the amount converted
CURRDEC | CURRDEC INT1 3 ONumber of decimal places
: | IN _WORDS CHAR 255 0Amount in words
DECWORD | DECWORD CHAR 128 0Decimal places in words

The component is WORD, so all you need to do is add WORD to the end of the WRITE
statement for result.

The final thing to be changed is to feed in the correct value which the function module will
then import. The AMOUNT field in the code currently equals 0. Change this to the mynum
variable used for the selection screen.

The final code should appear like this and can be tested:

271

MODULARIZING PROGRAMS

REPORT Z MOD 2

data result like 3PELL.
SELECTION-3CREEN BEGIN OF LINE.
SELECTION-5CREEN COMMENT 1(l5) text-001.
PARLMETER myTium Type i.
SELECTION-5CREEN END OF LINE.

CALL FUNCTION 'SPELL_AMOUNT'

EXPORTING

AMOUNT = mnynum
* CURFENCY = ' !
* FILLER = 1!
* LANGUAGE = 5T-LANGU
IMFORTING

IN_WOERD3 = result
* EXCEPTIONS
" NOT_FOUNT =1
* TOD_LARGE = 2
Lt OTHER3 = 3

IF sy-gubrc <> 0.

write: 'The function Hodule returned a wvalue of: ', sy-subrc.
elae.

write: 'The amount in words is: ', resulc-word.
ENDIF.

Z_MoD_2
® L3
T T
Enter a Walle 46791
[& =
SAP

-1y

The amount in words is:
FORTY=31x THOUSAND 3SEVEN HUNDEED NINETY=-O0ONE

272

MODULARIZING PROGRAMS

Having completed this example, these guidelines can be followed for practically any func-
tion module in SAP and, once you have got to grips with how function modules work, it
should not be too big a leap to then create your own when necessary.

273

MODULARIZING PROGRAMS

You have reached the end of this
book but don’t stop learning about
SAP.

Visit http://www.saptraininghg.com/book-purchase-thankyou to find out

about the special bonus offer for all readers of the book as well as read
all the additional training material on the website.

274

