

BEGINNER’S GUIDE

TO SAP ABAP

AN INTRODUCTION TO PROGRAMMING SAP

APPLICATIONS USING ABAP

PETER MOXON

PUBLISHED BY:

SAPPROUK Limited

Copyright © 2012 by Peter Moxon. All rights reserved.

http://www.saptraininghq.com

Copyright, Legal Notice and Disclaimer:

All rights reserved.

No part of this publication may be copied, reproduced in any format, by any means,

electronic or otherwise, without prior consent from the copyright owner and

publisher of this book.

This publication is protected under the US Copyright Act of 1976 and all other

applicable international, federal, state and local laws, and all rights are reserved,

including resale rights: you are not allowed to give or sell this Guide to anyone else.

If you received this publication from anyone other than saptraininghq.com, you've

received a pirated copy. Please contact us via e-mail at support at saptraininghq.com

and notify us of the situation.

Although the author and publisher have made every reasonable attempt to achieve

complete accuracy of the content in this Guide, they assume no responsibility for

errors or omissions. Also, you should use this information as you see fit, and at your

own risk. Your particular situation may not be exactly suited to the examples

illustrated here; in fact, it's likely that they won't be the same, and you should adjust

your use of the information and recommendations accordingly.

This book is not affiliated with, sponsored by, or approved by SAP AG. Any

trademarks, service marks, product names or named features are assumed to be the

property of their respective owners, and are used only for reference. There is no

implied endorsement if we use one of these terms.

__

iv

Table of Contents
Contact the Author 12

Introduction 13

How to Use This Book 14

Chapter 1: SAP System Overview 15

SAP System Architecture 15

Environment for Programs 18

Work Processes 19

The Dispatcher 19

The Database Interface 20

First look at the ABAP Workbench 22

First Look 23

ABAP Dictionary 27

ABAP Editor 27

Function Builder 27

Menu Painter 28

Screen Painter 28

Object Navigator 28

Chapter 2: Data Dictionary 29

Introduction 29

Creating a Table 29

Creating Fields 33

Data Elements 34

Data Domains 36

Technical Settings 45

Entering Records into a Table 48

v

Viewing the Data in a Table 51

Chapter 3 55

Creating a Program 55

Code Editor 57

Write Statements 62

Output Individual Fields 71

Chaining Statements Together 72

Copy Your Program 73

Declaring Variables 75

Constants 78

Chapter 4 79

Arithmetic – Addition 79

Arithmetic – Subtraction 80

Arithmetic – Division 81

Arithmetic – Multiplication 81

Conversion Rules 82

Division Variations 83

The standard form of division. 83

The integer form of division. 83

The remainder form of division. 84

Chapter 5 – Character Strings 85

Declaring C and N Fields 85

Data type C. 85

Data type N. 86

String Manipulation 87

Concatenate 87

vi

Condense 88

NO-GAPS 89

Find the Length of a String 89

Replace 90

Search 90

SEARCH Example 1 91

SEARCH Example 2 91

SEARCH Example 3 92

SEARCH Example 4 92

Shift 93

Split 94

SubFields 96

Chapter 6 – Debugging Programs 98

Fields mode 102

System Variables 103

Table Mode 103

Breakpoints 105

Static Breakpoints 107

Watchpoints 108

Ending a Debug Session 111

Chapter 7: Working with Database Tables 113

Making a Copy of a Table 113

Add New Fields 116

Foreign Keys 117

Append Structures 122

Include Structures 124

vii

Key Fields 127

Deleting Fields 130

Deleting Tables 133

Chapter 8 – Working with Other Data Types 136

Date and Time Fields 136

Date Fields in Calculations 138

Time Fields in Calculations 141

Quantity and Currency Fields in Calculations 142

Chapter 9 – Modifying Data in a Database Table 146

Authorisations 146

Fundamentals 146

Database Lock Objects 148

Using Open SQL Statements 149

Using Open SQL Statements – 5 Statements 150

Insert Statement 151

Clear Statement 155

Update Statement 157

Modify Statement 158

Delete Statement 160

Chapter 10 – Program Flow Control and Logical Expressions 164

Control Structures 164

If Statement 164

Linking Logical Expressions Together 169

Nested If Statements 169

Case Statement 170

Select Loops 171

viii

Do Loops 172

Nested Do Loops 175

While Loops 178

Nested While Loops 179

Loop Termination – CONTINUE 180

Loop Termination – CHECK 181

Loop Termination – EXIT 182

Chapter 11 – Selection Screens 184

Events 184

Intro to Selection Screens 185

Creating Selection Screens 186

At Selection Screen 187

Parameters 188

DEFAULT 189

OBLIGATORY 190

Automatic Generation of Drop-Down fields 190

LOWER CASE 191

Check Boxes and Radio Button Parameters 192

Select-Options 193

Select-Option Example 196

Select-Option Additions 200

Text Elements 200

Variants 203

Text Symbols 209

Text Messages 211

Skip Lines and Underline 216

ix

Comments 218

Format a Line and Position 219

Element Blocks 221

Chapter 12 – Internal Tables 223

Introduction 223

Types of Internal Tables 224

Standard Tables 224

Sorted Tables 225

Hashed Table 225

Internal Tables - Best Practice Guidelines 225

Creating Standard and Sorted Tables 226

Create an Internal Table with Separate Work Area 227

Filling an Internal Table with Header Line 228

Move-Corresponding 232

Filling Internal Tables with a Work Area 234

Using Internal Tables One Line at a Time 235

Modify 236

Describe and Insert 236

Read 238

Delete Records 239

Sort Records 240

Work Area Differences 241

Loops 241

Modify 242

Insert 242

Read 242

x

Delete 242

Delete a Table with a Header Line 243

CLEAR 243

REFRESH 243

FREE 243

Delete a Table with a Work Area 244

Chapter 13 – Modularizing Programs 245

Introduction 245

Includes 246

Procedures 249

Sub-Routines 250

Passing Tables 254

Passing Tables and Fields Together 255

Sub-Routines - External Programs 256

Function Modules 257

Function Modules – Components 258

Attributes Tab 262

Import Tab 262

Export Tab 263

Changing Tab 263

Tables Tab 263

Exceptions Tab 263

Source Code Tab 264

Function Module Testing 264

Function Modules - Coding 267

xi

12

Contact the Author

As the reader of this book you are my most important critic and commentator. I

would love to hear from you to let me know what you did and did not like about this

book, as well as to what you think I could do in future books to make them stronger.

E-mail: pete@sappro.co.uk

Please note that although I cannot personally help you learn SAP ABAP, I am

available for corporate hire for project management, technical lead and mentoring

programs.

Refer to my website http://www.saptraininghq.com to see all the training material I

have available and to get a good overview of my expertise.

13

INTRODUCTION

Introduction
This book has been written with SAP Super-User and Consultants in mind. Whether your

current job title is functional consultant, system support analyst, business consultant,

project manager for something entirely different, if you are responsible for all have an

interest in creating ABAP programs, then this book is for you.

Much of the book is written in the "How-To" style and will allow anybody to follow along

and create ABAP programs from scratch. It is written in such a way that each chapter

builds on the last so that you become familiar in lots of different aspects of SAP ABAP

programming to enable you to then start creating your own programs and understand

programs you will find in your own SAP system.

The principles and guidelines apply across all SAP modules whether you're writing

programs for HR, FI, SD or one of the many other modules within SAP.

Over my years of working with SAP systems I have had the great pleasure of working with

some top-notch functional and technical consultants who know how to document, plan

and develop SAP programs of all types. Likewise I have had the unpleasant experience of

working with lower quality consultants, who either race through or stumble and stutter

through their SAP work copying and pasting from one program or another resulting in

difficult to support programs. This ultimately often results in project delays and cost

overruns.

The aim of this book is to help you understand how SAP ABAP programs are put together

and developed so that you will produce detailed concise understandable and functional

programs that correspond with your specifications and most importantly delivered on

time and on budget.

14

INTRODUCTION

How to Use This Book
There are several ways to go through this book and the best way depends on your

situation.

If you are new to writing SAP programs then I suggest starting at the very beginning and

working through each chapter one after another.

If you are familiar with some SAP ABAP programming then you may want to use the table

of contents and jump to the chapter that interests you, but remember each chapter builds

on the previous chapter so some of the examples shown do require you to have

knowledge of the database tables we create in this book.

15

SAP SYSTEM OVERVIEW

Chapter 1: SAP System Overview
We will start out by covering the high-level architecture of an SAP system, including the

technical architecture and platform independence. We will dig into the environment that

our ABAP programs run in, which include the work processes and the basic structures of

an ABAP program. Then we can focus on a running SAP system, discuss the business

model overview, and begin looking at the ABAP workbench.

SAP System Architecture
First, the Technical Architecture of a typical SAP system will be discussed, before moving

on to the Landscape Architecture, and a discussion of why the landscape should be broken

into multiple systems.

This diagram shows the 3-tier Client/Server architecture of a typical SAP system:

16

SAP SYSTEM OVERVIEW

At the top is the Presentation server, which is any input device that can be used to control

an SAP system (the diagram shows the SAP GUI, but this could equally be a web browser,

a mobile device, and so on). The Presentation layer communicates with the Application

server, and the Application server is the 'brains' of an SAP system, where all the central

processing takes place. The Application server is not just one system in itself, but can be

made up of multiple instances of the processing system. The Application server, in turn,

communicates with the Database layer.

The Database is kept on a separate server, mainly for performance reasons, but also for

security, providing a separation between the different layers of the system.

Communication happens between each layer of the system, from the Presentation layer,

to the Application server, to the Database, and then back up the chain, through the

Application server again, for further processing, until finally reaching the Presentation

layer.

A typical Landscape Architecture - Typical here is subjective, in practical terms there is not

really any such thing as a standard, 'typical' landscape architecture which most companies

17

SAP SYSTEM OVERVIEW

use. However, it is common to find a Development system, a Testing system and a

Production system:

The reason for this is fairly simple. All the initial development and testing is done on a

Development system, which ensures other systems are not affected. Once developments

are at a stage where they may be ready to be tested by an external source, or someone

within the company whose role is to carry out testing, the developments are moved, using

what is called a Transport System, to the next system (here, the Testing system).

Normally, no development at all is done on the testing system; it is just used for testing

the developments from the development system. If everything passes through the Testing

system, a Transport system is used again to move the developments into the Production

environment. When code enters the Production environment, this is the stage at which it

is turned on, and used within the business itself.

The landscape architecture is not separated just for development purposes; the company

may have other reasons. This could be the quantity of data in the Production system,

which may be too great to be used in the development environment (normally the

Development and Testing systems are not as large as the Production system, only needing

a subset of data to test on). Also, it could be for security reasons. More often than not,

companies do not want developers to see live production data, for data security reasons

(for example, the system could include employee data or sales data, which a company

would not want people not employed in those areas to see). Normally, then, the

Development and Testing systems would have their own set of data to work with.

The three systems described here, normally, are a minimum. It can increase to four

systems, perhaps with the addition of a Training system, or perhaps multiple projects are

running simultaneously, meaning there may be two separate Development systems, or

Testing systems, even perhaps a Consolidation system before anything is passed to the

Production environment. This is all, of course, dependent on the company, but commonly

each system within the Landscape architecture will have its own Application server and its

own Database server, ensuring platform independence.

18

SAP SYSTEM OVERVIEW

Environment for Programs

Next, we have the environment which programs run in, the Work Processes, and the

structure of an ABAP program.

Within an SAP system, or at least the example used here, there are two types of programs,

Reports and Dynpro’s.

Reports, as the name would suggest, are programs which generate lists of data. They may

involve a small amount of interactivity, but mainly they supply data to the front-end

interfaces, the SAP GUI and so on. When a user runs a report, they typically get a selection

screen. Once they enter their selection parameters and execute the report, they normally

cannot intervene in the execution of the program. The program runs, and then displays

the output.

Dynpro’s are slightly different. They are dynamic programs, and allow the user to

intervene in the execution of the program, by processing a series of screens, called

19

SAP SYSTEM OVERVIEW

Dialogue screens. The user determines the flow of the program itself by choosing which

buttons or fields to interact with on the screen. Their action then triggers different

functions which have been coded within the flow logic of the program. While reports are

being created, interfaces are also to be generated which are classed as Dynpro’s, for all

the selection criteria.

Most of the work done by people involved with ABAP is done within Report programs, and

even though these programs are labelled 'Reports', they do not always generate output.

The Report programs are there to process the logic, reading and writing to the Database,

in order to make the system work.

Work Processes

Every program that runs in an SAP system runs on what are called Work Processes, which

run on the Application server. Work Processes themselves work independently of the

computer's operating system and the Database that it interacts with, giving the

independence discussed earlier with regard to the Technical architecture. When an SAP

system is initially set up, the basis consultants (who install the system, keep it running,

manage all the memory and so on) configure SAP in such a way that it automatically sets

the number of Work Processes programs use when they start, the equivalent of setting up

a pre-defined number of channels or connections to the Database system itself, each of

which tend to have their own set of properties and functions.

The Dispatcher

You might come across something referred to as the Dispatcher. The SAP system has no

technical limits as to the number of users who can log on and use it, generally the number

of users who can access an SAP system is much larger than the number of available Work

Processes the system is configured for. This is because not everybody is sending

instructions to the Application server at exactly the same time. Because of this, users

cannot be assigned a certain number of processes while they are logged on.

The Dispatcher controls the distribution of the Work Processes to the system users. The

Dispatcher keeps an eye on how many Work Processes are available, and when a user

triggers a transaction, the Dispatcher's job is to provide that user with a Work Process to

use. The Dispatcher tries to optimise things as far as possible, so that the same Work

Process receives the sequential Dialogue steps of an application. If this is not possible, for

example because the user takes a long time between clicking different aspects of the

20

SAP SYSTEM OVERVIEW

screen, it will then select a different Work Process to continue the processing of the

Dialogue program. It is the Work Process which executes an application, and it is the Work

Process which has access to the memory areas that contain all of the data and objects an

application uses. It also makes three very important elements available.

The first is the Dynpro processor. All Dynpro programs have flow and processing logic, and

it is the Dynpro processor's job to handle the flow logic. It responds to the user's

interactions, and controls the further flow of the program depending on these

interactions. It is responsible for Dialogue control and the screen itself, but it is important

to remember that it cannot perform calculations; it is purely there to manage the flow

logic of a program.

The next important element is the ABAP processor, which is responsible for the processing

logic of the programs. It receives screen entries from the Dynpro processor, and transmits

the screen output to the program. It is the ABAP processor which can perform the logical

operations and arithmetical calculations in the programs. It can check authorisations, and

read and write to the Database, over the Database Interface.

The Database Interface

The Database Interface is the third important element. It is a set of ABAP statements that

are Database independent. What this means is that a set of ABAP statements can be used

that, in turn, can communicate with any type of Database that has been installed when

the system was set up. Whether this is, for example, a Microsoft SQL server or an Oracle

Database, you can use the same ABAP statements, called Open SQL, to control the entire

Database reading and writing over the Database Interface. The great advantage of this is

that the ABAP statements have encapsulation, meaning the programmers do not need to

know which physical Database system the ABAP system they are using actually supports.

There are times when you may want to use a specific SQL statement native to the

database which is installed. ABAP is designed in such a way that if this type of coding is

necessary, this facility is available. It is possible to directly access the Database through

the programs using native SQL statements, but this is not encouraged. Normally, when

systems are set up, the system administrator will forbid these practices, due to the

security and stability risks to the system which may be introduced. If you are going to be

programming ABAP, make sure Open SQL is used, because then anyone subsequently

looking at the programs will understand what is trying to be achieved.

21

SAP SYSTEM OVERVIEW

22

SAP SYSTEM OVERVIEW

First look at the ABAP Workbench
It is now time to take a first look at an SAP ABAP program. The following section will look

at the SAP System and introduce the ABAP Workbench. But before doing so, let's take a

look at the structure of an ABAP program.

Like many other programming languages, ABAP programs are normally structured into

two parts.

The first is what is considered to be the Declaration section. This is where you define the

data types, structures, tables, work area variables and the individual fields to be used

inside the programs. This is also where you would declare global variables that will be

available throughout the individual subsections of the program. When creating an ABAP

program, you do not only declare global variables, but you also have the option to declare

23

SAP SYSTEM OVERVIEW

variables that are only valid within specific sections inside the programs. These sections

are commonly referred to as internal Processing Blocks.

The Declaration part of the program is where you define the parameters used for the

selection screens for the reports. Once you have declared tables, global variables and data

types in the Declaration section of the program, then comes the second part of the ABAP

program, where all of the logic for the program will be written. This part of an ABAP

program is often split up into what are called Processing Blocks.

The Processing Blocks defined within programs can be called from the Dynpro processor,

which were discussed previously, depending on the specific rules created within the

program. These Processing Blocks are almost always just small sections of programming

logic which allow the code to be encapsulated.

First Look
When logged into an SAP system it will look something similar to the image below.

The way the SAP GUI looks may vary, the menu to the side may be different, but here the

display show a minimal menu tree which will be used throughout this book.

The first thing to do here is look at the ABAP Workbench. To access this, you use the menu

on the left hand side. Open the SAP menu, choose Tools and open the ABAP Workbench,

where there will be four different options.

24

SAP SYSTEM OVERVIEW

The first thing to look at is a quick overview of how to run a transaction in SAP. There are

two ways to do this. Firstly, if the overview folder is opened, any item which does not look

like a folder itself, is a transaction which can be run. In this instance, we can see the Object

Navigator:

Double click this, and the transaction will open:

25

SAP SYSTEM OVERVIEW

To exit out of the transaction, click the Back button:

The second way of running a transaction is to enter the transaction code into the

transaction code input area:

A useful tip to become familiar with the names of transactions is to look at the Extras

menu --> open Settings and in the dialogue box which appears, select the option 'Display

technical names' and click the 'Continue' icon:

26

SAP SYSTEM OVERVIEW

The menu tree will be refreshed, and when the 'Overview' folder is opened, the

transaction codes will be made visible. It is now possible to become familiar with them,

and enter them directly into the transaction code input area:

Now, a step-by-step look will be taken through the major transactions of the ABAP

Workbench to become familiar with, and use, as an ABAP developer.

27

SAP SYSTEM OVERVIEW

ABAP Dictionary

One thing most programs will have in common is that they will read and write data to and

from the Database tables within the SAP system. The ABAP Workbench has a transaction

to allow the creation of Database tables, view the fields which make up these tables and

browse the data inside. This is called the ABAP Dictionary. The ABAP Dictionary can be

found by expanding the ABAP Workbench menu tree --> 'Development'. The transaction

code to run the ABAP dictionary directly is SE11:

ABAP Editor

The next and probably most commonly used part of the ABAP Workbench is the ABAP

Editor, which much of this course will focus upon. The ABAP Editor is where all of the code

is created, the logic built and, by using forward navigation (a function within an SAP

system which will be discussed later), function modules defined, screens created and so

on. The ABAP Editor can be found under the 'Development' menu, as shown above and

with transaction code SE38.

Function Builder

The next important part of the Workbench is the Function Builder, which is similar to the

ABAP Editor. Its main function is to define specific tasks that can be called from any other

program. Interfaces are created in the Function Builder, where the different data

elements and different types of tables are defined, that can be passed to and from the

Function which is built. The Function Builder will be discussed a little later on, when the

programs created are encapsulated into function modules. The Function Builder can be

28

SAP SYSTEM OVERVIEW

called with transaction code SE37.

Menu Painter

The next item to look at here is called the Menu Painter, which can be found in the 'User

Interface' folder inside the 'Development' menu, or with transaction code SE41. This is a

tool which can be used to generate menu options, buttons, icons, menu bars, transaction

input fields, all of which can trigger events within the program. You can define whether

events are triggered using a mouse click, or with a keyboard-based shortcut. For example,

in the top menu bar here, the 'Log off' button can be seen, which can be triggered by using

(Shift + F3):

Screen Painter

While the Menu Painter is used for building menu items, menu bars and so on, the next

item on the list is the Screen Painter, transaction code SE51, which allows you to define

the user input screen, meaning that you can define text boxes, drop-down menus, list

boxes, input fields, tabbed areas of the screen and so on. It allows you to define the whole

interface which the user will eventually use, and behind the initial elements that are put

on the screen, you can also define the individual functions which are called when the user

interacts with them.

Object Navigator

The last item to look at here is the Object Navigator, a tool which brings together all the

previous tools, providing a highly efficient environment in which to develop programs.

When building large programs, with many function modules, many screens, the Object

Navigator is the ideal tool to use to navigate around the development. It can be found in

the 'Overview' menu of the ABAP Workbench, with transaction code SE80.

These are the main features of the ABAP Workbench interacted with during this course. In

the SAP menu tree, there are evidently many more transactions which can be used to help

develop programs, but these cover the vast majority of development tools which will be

used.

29

DATA DICTIONARY

Chapter 2: Data Dictionary

Introduction
This chapter will focus specifically on the Data Dictionary. This is the main tool used to

look at, understand and enhance the Database and Database tables which are used by the

SAP system. You can view standard tables delivered by SAP using this tool, create new

tables and enhance the existing tables delivered by SAP with new fields. There are many

other features involved in the Data Dictionary, but the focus here will be on the basic ones

so as to build on this later on when creating ABAP programs.

First, a database table will be created, involving the creation of fields, data elements and

domains. An explanation of what each of these is, and why they are necessary to the

tables built will be given. During the building of the tables, the tools used to check for

errors will be shown. Once these errors are eradicated, the tables can be activated so that

they can be used within the system.

After this, a look will be taken at maintaining the technical settings of the table created,

which will allow the entry of data, before finally looking at the data which has been

entered using standard SAP transactions available in the SAP system.

Creating a Table

With the SAP GUI open, you will be able find the Data Dictionary in the SAP menu tree.

This is done via the Tools menu. Open the ABAP Workbench and click the 'Development'

folder, where the ABAP Dictionary can be found and double-clicked. Alternatively, use the

transaction code SE11:

Now, the initial screen of the ABAP Dictionary will appear:

30

DATA DICTIONARY

To create a table, select the 'Database table' option. In this exercise a transparent table

will be created. Other types of table do exist (such a cluster tables and pool tables), but at

this early stage the transparent table variety is the important one to focus upon.

The table name must adhere to the customer-defined name space, meaning that the

name must begin with the letter Z or Y, most commonly this will be Z. In this example, the

table will show a list of employees within a company, so, in the 'Database table' area, type

'ZEMPLOYEES' and click the 'Create' button.

Once this is done, a new screen will appear:

31

DATA DICTIONARY

In the 'Short text' field, a description for the table must be included, enter 'Employees':

In the 'Delivery and Maintenance' tab (which opens by default), look at the 'Delivery class'

section, select the field and then click the drop-down button, where a list of Delivery

classes will be shown and selected:

32

DATA DICTIONARY

For the table being created here, choose 'Application table', as the data held in the table

fits the description 'master and transaction data'.

In the field below this, labelled 'Data Browser/Table View Maint.', choose the

'Display/Maintenance allowed' option, which will allow for data entry directly into the

table later on. It should look like this:

Before going any further, click the 'Save' button:

A window appears titled 'Create Object Directory Entry'.

Nearly all development work done with SAP is usually done within a development

environment, before being moved on to, for example, a quality assurance environment

and on further to production. This window allows you to choose the appropriate

Development class which is supported by other systems where the work may be moved

on to. In this example scenario, though, developments will not be moved on to another

system, so click 'Local object', so as to indicate to the system (via the phrase '$TMP' which

appears) that the object is only to exist within the development system and not to be

transported elsewhere. Once this is done, the status bar at the bottom will show that the

object has been saved:

33

DATA DICTIONARY

To check everything has worked as we want, select the 'Go to' menu and selects the

'Object directory entry' option, a similar pop-up box to the previous one will appear,

where the 'Development class' field will show '$TMP', confirming this has been done

correctly.

Creating Fields

The next step is to begin creating Field names for the table, in the 'Fields' tab:

Fields, unlike the name of the table, can begin with any letter of the alphabet, not just Z

and Y and can contain up to 16 characters.

34

DATA DICTIONARY

Tables must include at least one Key field, which is used later for the searching and sorting

of data, and to identify each record as being unique.

An Initial value can be assigned to each field, for example, in the case of a field called

Employee Class you could say the majority of employees are Regular Staff ('S'), but some

are Directors, with a code of 'D'. The standard initial value would be 'S', but the user could

change some of these to a 'D' later on.

Data Elements

Every Field in the table is made up of what is called a Data Element, which defines specific

attributes of each field.

The first Field to be created here is an important one within an SAP system, and identifies

the client which the records are associated with. In the Field name, enter 'Client', and in

the Data Element, type 'MANDT'. This Data Element already exists in the system, and after

entering it, the system automatically fills in the Data Type, the Length, Number of

Decimals and Short text for the Data Element itself. Ensure that the 'Client' field is made a

Key field in the table by checking the 'Key' box.

The next field will be called 'Employee'. Again, check the box to make this a Key field, and

enter the new Data Element 'ZEENUM' (Data Elements broadly must adhere to the

customer name space by beginning with Z or Y). Once this is done, click the save button.

Next, because the Data Element 'ZEENUM' does not yet exist, it must be created. If you try

to activate or even check the table (via the 'Check' button), an error message is

displayed:

Until the Data Element 'ZEENUM' is created, it cannot be used within the system. To do

this, forward navigation is used. Double-click the new Data Element, and a window

labelled 'Create Data element' appears. Answer 'Yes' to this, and the 'Maintain Data

Element' window comes up.

35

DATA DICTIONARY

36

DATA DICTIONARY

In the 'Short text' area, enter 'Employee Data Element'. Next, the Elementary data type,

called the 'Domain', must be defined for the new Data element. Domains must adhere to

the customer name space, so in this instance the same name as the Data element will be

given: 'ZEENUM', (though giving both the same name is not imperative). Again, forward

navigation will be used to create the Domain.

Data Domains

Double-click the entry ('ZEENUM') in the Domain area, and agree to save the changes

made. Now, the 'Create Object Directory Entry' window will re-appear and again it is

important to save this development to the '$TMP' development class, via the 'save' or

'local object' button visible in this window.

After doing this, a window will appear stating that the new Domain 'ZEENUM' does not

exist. Choose 'Yes' to create the Domain, and in the window which appears, type into the

'Short text' box a description of the Domain. In this example, 'Employee Domain':

37

DATA DICTIONARY

The 'Definition' tab, which, as shown above, opens automatically. The first available field

here is 'Data type', click inside the box and select the drop-down menu, and a number of

generic data types already existing within the ABAP dictionary will appear.

The 'NUMC' type is the one to be used here for the Employee data, a “character string

with only digits”. Once this selection is double-clicked, it will appear in the 'Data type' area

in the 'Definition' tab.

Next, in the 'No. characters' field, enter the number 8, indicating that the field will contain

a maximum of 8 characters, and in the 'Decimal places' area, enter 0. An Output length of

8 should be selected, and then press Enter.

The 'NUMC' field's description should re-appear, confirming that this is a valid entry.

Next, select the 'Value range' tab, which is visible next to the 'Definition' tab just used:

This is where you set valid value ranges for the Domain created. Once this is set, any

subsequent user entering values outside the valid value range will be shown an error

38

DATA DICTIONARY

message and be requested to enter a valid entry. Here, there are three options.

 First, where you can see 'Single values', it is possible to enter a list of individual

valid values which can be entered by the user.

 Second, 'Intervals', where you can enter a lower and upper limit for valid values,

for example 1 and 9, which saves the effort of entering 9 individual single values in

the 'Single values' section.

 Last, the 'Value table' box visible at the bottom. When there are a large number of

possible entries, this is a common method (to do this you must specify a complete

valid value table entry list, in which case it is also necessary to introduce foreign

keys to the table, to ensure the user's entries are tested against the value stored

in the value table created).

This example Domain, however, does not require any Value range entry, so just click the

save button and, again, assign it as a 'Local object'.

The next step is to Activate the object, allowing other Data elements to use this domain

going forward. In the toolbar click the small matchstick icon (also accessible by pressing

CTRL +F3).

A pop-up window appears, listing the 3 currently inactive objects:

It may be possible to activate all of the objects together, but this is not advised. In a typical

development environment, a number of people will be creating developments

simultaneously, and quite often, others' objects will appear in this list.

At this point, it is only the Domain which is to be activated, the top entry labelled 'DOMA',

with the name 'ZEENUM'. When this is highlighted, click the green tick continue button.

The window should disappear, and the status bar will display the message 'Object(s)

39

DATA DICTIONARY

activated'

Now it is possible to proceed with the creation of the table. Forward navigation was used

for generating the Domain, so click the 'Back' button, or press F3 to return to the

'Maintain Data Element' screen. As the domain is active, the description entered

previously should appear by the area where 'ZEENUM' was typed, along with other

Domain properties which have been created:

Next, the Field labels must be created, so click that tab. The Field labels entered here will

appear as field labels in the final table. In this example they should read 'Employee', or

better, 'Employee Number'. If this does not fit within the area given, just tailor it so that it

still makes sense, for example typing 'Employee N' into the 'Short' Field label box. Once

the text has been put into the Field label spaces, press enter, and the 'Length' section will

automatically be filled in:

40

DATA DICTIONARY

Once this is complete, Save and Activate the element via the toolbar at the top. The

inactive objects window will reappear, where two inactive objects will remain. Highlight

the Data element (labelled 'DTEL') and click the green tick

Continue button at the bottom.

Again, the status bar should display 'Object(s) activated'.

Press the back button to return to the Table maintenance screen. Here you will now see

that the 'EMPLOYEE' column has the correct Data Type, Length, Decimals and Short text,

thus indicating the successful creation of a Data element and Domain being used for this

Field.

Next, the same practices will be used to create four additional fields.

The next field to create should be titled 'SURNAME'. This time it should not be selected as

a Key field, so do not check the box. The Data element, in this instance, is labelled

'ZSURNAME':

Now, forward navigation will again be used. Double-click ‘ZSURNAME’; choose 'Yes' to

save the table and 'Yes' again to create the new Data element. The 'Maintain Data

Element' window will appear which will be familiar from the previous steps.

In the 'Short text' box this time type 'Surname Data Element' and title the new domain

41

DATA DICTIONARY

'ZSURNAME':

Double-click the new domain and save the Data element, assigning it a 'Local object' and

then choose 'Yes' to create the new Domain.

The Domain maintenance screen will reappear. Enter the short text 'Surname' and, this

time; the Data type to select is 'CHAR', a Character string.

The number of characters and output length should both be set to 40, then press enter to

be sure everything has worked, and click the Activate button.

42

DATA DICTIONARY

Note that the Save button has not been pressed this time, as the Activate button will also

save the work automatically. Ensure you assign the object to the $TMP development class

as usual.

In the Activate menu, select the object (the domain (labelled 'DOMA') named

'ZSURNAME') to be activated, and click the green tick continue button. The status bar

should read 'Object saved and activated'.

Following this, click Back or F3 to return to the Maintain Data element screen. Ensure the

domain attributes have appeared (Short text, Data type, Length and so on). In the Field

Label tab, enter 'Surname' in each box and press Enter to automatically fill the 'Length'

boxes and then activate the Data element (in the Activate menu, the 'DTEL' object named

'ZSURNAMES'), checking the status bar to ensure this has occurred with any errors:

Again, press Back to return to the Maintain Table screen, where the new Data element will

be visible:

43

DATA DICTIONARY

The next field to be created is titled 'FORENAME', and the data element 'ZFORENAME'.

Click to create the Data element and follow the steps above again.

In the Maintain Data Element screen, the Short text should read 'Forename Data Element'

and the domain 'ZFORENAME'. Save this and choose 'Yes' to create the domain.

The domain's short text should read 'Forename'. Use the CHAR data type again and a

Length and Output length of 40. Next, Activate the Domain as before.

Return to the Maintain Data Element screen. Type 'Forename' into the four Field label

boxes. Press enter to fill the length boxes and then Activate the Data Element named

'ZFORENAME' as before. Go back again to see the table:

44

DATA DICTIONARY

The next field will be called 'Title' and the Data Element 'ZTITLE', follow the steps above

again to create this field with the following information:

The Data element short text should read 'Title Data Element' and the domain should be

named 'ZTITLE'.

The Domain Short text should be 'Title' and the Data type is again 'CHAR'. This time the

Length and Output length will be 15.

The Field labels should all read 'Title'.

Activate all of these and go back to view the new, fifth field in the Table.

The final field which will be created for this table is for Date of Birth. In the Field box type

'DOB' and create the Data element 'ZDOB' using the steps from the previous section and

this information:

The Data element short text should read 'Date of Birth Data Element' and the domain

should be named 'ZDOB'.

The Domain Short text should be 'Date of Birth' and the Data type is, this time, 'DATS',

after which an information box will appear to confirm this. Click the green tick to continue:

45

DATA DICTIONARY

For the DATS data type, the Length and Output lengths are set automatically at 8 and 10

(the Output length is longer as it will automatically output dividers between the day,

month and year parts of the date).

The Field labels should all read 'Date of Birth', except the 'Short' label where this will not

fit, so just type 'DOB' here. Activate the Domain and Data element, and return to the

table.

Technical Settings
Once this has been saved, the next step is to move on to maintaining the technical settings

of the Table. Before creating the final Database table, SAP will need some more

information about the table being created.

Select 'Technical settings' via the toolbar above the table, through the 'Go to' menu, or

46

DATA DICTIONARY

with the shortcut CTRL+SHIFT+F9.

Here, it is important to tell the system what Data class is to be used, so select the drop

down button. There are five different options, with accompanying descriptions. For this

table, select the first, labelled 'APPL0', and double-click it:

For the 'Size category' field, again click the drop-down button. Here, you have to make an

estimate as to the amount of data records which will be held within the table so that the

system has some idea of how to create the tables in the underlying database. In this

instance, it will be a relatively small amount of information, so select the first size

category, labelled 0:

47

DATA DICTIONARY

Below this are the Buffering options. Here, 'Buffering not allowed' should be selected:

This prevents the table contents from being loaded into memory for reading, stopping the

table from being read in advance of the selection of the records in the program. You may,

correctly, point out that it may be advantageous to hold the table in the memory for

speed efficiency, but in this example, this is not necessary. If speed was an issue in a

development, buffering would then be switched on, ensuring the data is read into

memory. In the case of large tables which are accessed regularly but updated

infrequently, this is the option to choose.

Nothing else on the 'Maintain Technical Settings' screen needs to be filled at this point, so

click Save and then go back to the table itself. If all of this is successful, then the table

should now be in a position to be activated and the entry of records can begin. Click the

Activate icon to activate the table and check the status bar, which should again read

'Object Activated'.

48

DATA DICTIONARY

Entering Records into a Table
Now that the table has been created, data can be entered. To do this, enter the 'Utilities'

menu, scroll to 'Table contents', and then 'Create Entries':

A Data-entry screen will appear which has automatically been generated from the table

created. The field names correspond here to the technical names given when we created

them. To change these to the Field labels which we set up, enter the 'Settings' menu and

select 'User Parameters'. This facility allows you to tailor how tables look for your own

specific user ID. Select the 'Field label' radio button and click 'Continue':

49

DATA DICTIONARY

The Field labels created will now appear as they were defined when creating the table:

The Employee Number field is limited to 8 characters, and the data type was set to NUMC,

so only numerical characters can be entered. Create a record with the following data:

 Employee Number: '10000001'

 Surname: 'Brown'

 Forename: 'Stephen'

 Title: 'Mr'

 Date of Birth: '16.02.1980':

Press Enter and the system will automatically put the names in upper case, and validate

each field to ensure the correct values were entered:

50

DATA DICTIONARY

Click Save and the status bar should state 'Database record successfully created'. Next,

click the 'Reset' button above the data entry fields to clear the fields for the next entry.

Create another record with the following data:

 Employee Number '10000002'

 Surname 'Jones'

 Forename 'Amy'

 Title 'Mrs'

 Date of Birth '181169'.

Note that this time the Date of Birth has been filled in without the appropriate dividers.

When Enter is pressed, the system automatically validates all fields, correcting the Date of

Birth field to the correct formatting itself:

51

DATA DICTIONARY

Save, Reset, and then further records can be entered following the same steps:

Note that if dates are entered in the wrong format, an error message will appear in the

status bar:

Viewing the Data in a Table
Now that data has been entered into the table, the final few steps will allow this data to

be viewed.

Having entered several data records in the manner discussed previously, click the Back key

to return to the 'Dictionary: Display Table' screen. To view the table created with the data

entered, from the 'Utilities' menu, select 'Table contents' and then 'Display':

52

DATA DICTIONARY

A selection screen will then appear, allowing you to enter or choose filter values for the

fields you created. The selection screen is very useful when you have lots of data in your

table. In this case, though, only five records have been entered, so this is unnecessary.

However, for example if you were to only want to focus on a single employee number, or

a small range, these figures can be selected from this screen:

To view all of the records, do not enter any data here. Just click the 'Execute' button,

which is displayed in the top left corner of the image above, or use the shortcut F8. You

will now see a screen showing the data records you entered in the previous section:

53

DATA DICTIONARY

If further fields were to exist, the screen would scroll further to the right, meaning not all

fields could be displayed simultaneously due to field size properties.

If you want to see all of the data for one record, double-click on the record and this will be

shown. Alternatively, several records can be scrolled through by selecting the desired

records via the check-boxes to the left of the 'Client' column and then clicking the 'Choose'

icon on the toolbar:

These can then be individually viewed and scrolled through with the 'Next entry' button:

To return to the full table then, simply click the Back button, or press F3.

Experiment with the table created, using the toolbar's range of options to filter and sort

the information in a number of ways:

54

DATA DICTIONARY

For example, to organise alphabetically by forename, click to select the 'Forename' field,

and then click the 'Sort ascending' button:

There are a number of things which can be achieved in this table view, and it can be a

useful tool for checking the data within an SAP system without going through the

transaction screens themselves.

55

YOUR FIRST ABAP PROGRAM

Chapter 3

Creating a Program
To begin creating a program, access the ABAP Editor either via transaction code SE38, or

by navigating the SAP menu tree to Tools ABAP Workbench Development, in which

the ABAP Editor is found. Double-click to execute.

A note to begin: it is advisable to keep the programs created as simple as possible. Do not

make them any more complicated than is necessary. This way, when a program is passed

on to another developer to work with, fix bugs and so on, it will be far easier for them to

understand. Add as many comments as possible to the code, to make it simpler for

anyone who comes to it later to understand what a program is doing, and the flow of the

logic as it is executed.

The program name must adhere to the customer naming conventions, meaning that here

it must begin with the letter Z. In continuation of the example from the previous chapter,

in this instance the program will be titled ‘Z_Employee_List_01’, which should be typed

into the ‘Program’ field on the initial screen of the ABAP Editor. Ensure that the ‘Source

code’ button is checked, and then click ‘Create’:

56

YOUR FIRST ABAP PROGRAM

A ‘Program Attributes’ window will then appear. In the ‘Title’ box, type a description of

what the program will do. In this example, “My Employee List Report”. The Original

language should be set to EN, English by default, just check this, as it can have an effect on

the text entries displayed within certain programs. Any text entries created within the

program are language-specific, and can be maintained for each country using a translation

tool. This will not be examined at length here, but is something to bear in mind.

In the ‘Attributes’ section of the window, for the ‘Type’, click the drop-down menu and

select ‘Executable program’, meaning that the program can be executed without the use

of a transaction code, and also that it can be run as a background job. The ‘Status’ selected

should be ‘Test program’, and the ‘Application’ should be ‘Basis’. These two options help

to manage the program within the SAP system itself, describing what the program will be

used for, and also the program development status.

For now, the other fields below these should be left empty. Particularly ensure that the

‘Editor Lock’ box is left clear (selection of this will prevent the program from being edited).

‘Unicode checks active’ should be selected, as should ‘Fixed point arithmetic’ (without

this, any packed-decimal fields in the program will be rounded to whole numbers). Leave

the ‘Start using variant’ box blank. Then, click the Save button.

57

YOUR FIRST ABAP PROGRAM

The familiar ‘Create Object Directory Entry’ box from the previous section should appear

now, click the ‘Local object’ option as before to assign the program to the temporary

development class. Once this is achieved, the coding screen is reached.

Code Editor
Here, focus will be put on the coding area. The first set of lines visible here are comment

lines. These seven lines can be used to begin commenting the program. In ABAP,

comments can appear in two ways. Firstly, if a * is placed at the beginning of a line, it

turns everything to its right into a comment.

58

YOUR FIRST ABAP PROGRAM

Note that the * must be in the first column on the left. If it appears in the second column

or beyond, the text will cease to be a comment.

A comment can also be written within a line itself, by using a “. Where this is used,

everything to the right again becomes a comment. This means that it is possible to add

comments to each line of a program, or at least a few lines of comments for each section.

The next line of code, visible above, begins with the word REPORT. This is called a

STATEMENT, and the REPORT statement will always be the first line of any executable

program created. The statement is followed by the program name which was created

previously. The line is then terminated with a full stop (visible to the left of the comment).

Every statement in ABAP must be followed by a full stop, or period. This allows the

statement to take up as many lines in the editor as it needs, so for example, the REPORT

statement here could look like this:

59

YOUR FIRST ABAP PROGRAM

As long as the period appears at the end of the statement, no problems will arise. It is this

period which marks where the statement finishes.

If you require help with a statement, place the cursor within the statement and choose

the ‘Help on...’ button in the top toolbar:

A window will appear with the ABAP keyword automatically filled in. Click the continue

button and the system will display help on that particular statement, giving an explanation

of what it is used for and the syntax. This can be used for every ABAP statement within an

SAP system. Alternatively, this can be achieved by clicking the cursor within the

statement, and pressing the F1 key:

60

YOUR FIRST ABAP PROGRAM

A further tip in this vein is to use the ‘ABAP Documentation and Examples’ page, which

can be accessed by entering transaction code ABAPDOCU into the transaction code field.

The menu tree to the left hand side on this screen allows you to view example code, which

one’s own code can later be based upon. This can either be copied and pasted into the

ABAP editor, or experimented with inside the screen itself using the Execute button to run

the example code:

61

YOUR FIRST ABAP PROGRAM

Returning to the ABAP editor now, the first line of code will be written. On the line below

the REPORT statement, type the statement: write ‘HELLO SAP WORLD’.

The write statement will, as you might expect, write whatever is in quotes after it to the

output window (there are a number of additions which can be made to the write

statement to help format the text, which we will return in a later chapter).

Save the program, and check the syntax with the ‘Check’ button in the toolbar (or via CTRL

+ F2). The status bar should display a message reading “Program Z_EMPLOYEE_LIST_01 is

syntactically correct”. Then, click the ‘Activate’ button, which should add the word ‘Active’

next to the program name. Once this is done, click the ‘Direct processing’ button to test

the code:

62

YOUR FIRST ABAP PROGRAM

The report title and the text output should appear like this, completing the program:

Write Statements
Now that the first program has been created, it can be expanded with the addition of

further ABAP statements. Use the Back button to return from the test screen to the ABAP

editor.

Here, the tables which were created in the ABAP Dictionary during the first stage will be

accessed. The first step toward doing this is to include a table’s statement in the program,

which will be placed below the REPORT statement. Following this, the table name which

63

YOUR FIRST ABAP PROGRAM

was created is typed in, z_employee_list_01, and, as always, a period to end the

statement:

While not essential, to keep the format of the code uniform, the Pretty Printer facility can

be used. Click the ‘Pretty Printer’ button in the toolbar to automatically alter the text in

line with the Pretty Printer settings (which can be accessed through the Utilities menu,

Settings, and the Pretty Printer tab in the ABAP Editor section):

Once these settings have been applied, the code will look slightly tidier, like this:

64

YOUR FIRST ABAP PROGRAM

Let us now return to the TABLES statement. When the program is executed, the TABLES

statement will create a table structure in memory based on the structure previously

defined in the ABAP Dictionary. This table structure will include all of the fields previously

created, allowing the records from the table to be read and stored in a temporary

structure for the program to use.

To retrieve from our data dictionary table and place them into the table structure, the

SELECT statement will be used.

Type SELECT * from z_employee_list_01. This is telling the system to select everything

(the * refers to all-fields) from the table. Because the SELECT statement is a loop, the

system must be told where the loop ends. This is done by typing the statement

ENDSELECT. Now we have created a select loop let’s do something with the data we have

are looping through. Here, the WRITE command will be used again. Replace the “write

‘HELLO SAP WORLD’.” line with “write z_employee_list_01.” to write every row of the

table to the output window:

Check the code with the ‘Check’ button, and it will state that there is a syntax error:

65

YOUR FIRST ABAP PROGRAM

The cursor will have moved to the TABLES statement which was identified, along with the

above warning. The name “Z_EMPLOYEE_LIST_01” appears to be incorrect. To check this,

open a new session via the New Session button in the toolbar . Execute the ABAP

Dictionary with transaction code SE11, search for Z* in the ‘Database table’ box and it will

bring back the table ZEMPLOYEES, meaning that the initial table name

Z_EMPLOYEE_LIST_01 was wrong. Close the new session and the syntax error window and

type in the correct table name ‘ZEMPLOYEES’ after the TABLES state. Your screen should

look like this:

Save the program and check the code, ensuring the syntax error has been removed, and

then click the Test button (F8) and the output window should display every row of the

table:

66

YOUR FIRST ABAP PROGRAM

Look at the data in the output window. The system has automatically put each line from

the table on a new row. The WRITE statement in the program did not know that each row

was to be output on a new line; this was forced by some of the default settings within the

system regarding screen settings, making the line length correspond to the width of the

screen. If you try to print the report, it could be that there are too many columns or

characters to fit on a standard sheet of A4. With this in mind, it is advisable to use an

addition to the REPORT statement regarding the width of each line.

Return to the program, click the REPORT statement and press the F1 key and observe the

LINE SIZE addition which can be included:

In this example, add the LINE-SIZE addition to the REPORT statement. Here, the line will be

limited to 40 characters. Having done this, see what difference it has made to the output

window. The lines have now been broken at the 40 character limit, truncating the output

67

YOUR FIRST ABAP PROGRAM

of each line:

Bear these limits in mind so as to avoid automatic truncation when printing reports. For a

standard sheet of A4 this limit will usually be 132 characters. When the limit is set to this

for the example table here, the full table returns, but the line beneath the title ‘My

Employee List Report’ displays the point at which the output is limited:

Next, the program will be enhanced somewhat, by adding specific formatting additions to

the WRITE statement. First, a line break will be inserted at the beginning of every row that

is output.

68

YOUR FIRST ABAP PROGRAM

Duplicate the previous SELECT – ENDSELECT statement block of code and place a ‘/’ after

the WRITE statement. This will trigger a line break:

Save and execute the code. The output window should now look like this:

The first SELECT loop has created the first five rows, and the second has output the next

five.

Both look identical. This is due to the LINE-SIZE limit in the REPORT statement, causing the

first five rows to create a new line once they reached 132 characters. If the LINE-SIZE is

increased to, for example 532, the effects of the different WRITE statements will be

visible:

69

YOUR FIRST ABAP PROGRAM

The first five rows, because they do not have a line break in the WRITE statement, have

appeared on the first line up until the point at which the 532 character limit was reached

and a new line was forced. The first four records were output on the first line. The 5th

record appears on a line of its own followed by the second set of five records, having had

a line break forced before each record was output.

Return the LINE-SIZE to 132, before some more formatting is done to show the separation

between the two different SELECT loops.

Above the second SELECT loop, type ULINE. This means underline.

Click the ULINE statement and press F1 for further explanation from the Documentation

window, which will state “Writes a continuous underline in a new line.” Doing this will

help separate the two different SELECT outputs in the code created. Execute this, and it

should look like so:

Duplicate the previous SELECT – ENDSELECT statement block of code again, including the

70

YOUR FIRST ABAP PROGRAM

ULINE, to create a third SELECT output. In this third section, remove the line break from

the WRITE statement and, on the line below, type “WRITE /.” This will mean that a new

line will be output at the end of the previous line. Execute this to see the difference in the

third section:

Now, create another SELECT loop by duplicating the second SELECT loop. This time the

WRITE statement will be left intact, but a new statement will be added before the SELECT

loop: SKIP, which means to skip a line. This can have a number added to it to specify how

many lines to skip, in this case 2. If you press F1 to access the documentation window it

will explain further, including the ability to skip to a specific line. The code for this section

should look like the first image, and when executed, the second:

71

YOUR FIRST ABAP PROGRAM

Our program should now look as shown below. Comments have been added to help

differentiate the examples.

Output Individual Fields

Create another SELECT statement. This time, instead of outputting entire rows of the

table, individual fields will be output. This is done by specifying the individual field after

the WRITE statement. On a new line after the SELECT statement add the following line

WRITE / zemployees-surname. Repeat this in the same SELECT loop for fields Forename

and DOB. Then execute the code:

72

YOUR FIRST ABAP PROGRAM

To tidy this up a little remove the / from the last 2 WRITE statements which will make all 3

fields appear on 1 line.

Chaining Statements Together
We have used the WRITE statement quite a lot up to now and you will see it appear on a

regular basis in many standard SAP programs. To save time, the WRITE statements can be

73

YOUR FIRST ABAP PROGRAM

chained together, avoiding the need to duplicate the WRITE statement on every line.

To do this, duplicate the previous SELECT loop block of code. After the first WRITE

statement, add “:” This tells the SAP system that this WRITE statement is going to write

multiple fields (or text literals). After the “zemployees-surname” field change the period

(.) to a comma (,) and remove the second and third WRITE statements. Change the second

period (.) to comma (,) also but leave the last period (.) as is to indicate the end of the

statement. This is how we chain statements together and can also be used for a number

of other statements too.

Execute the code, and the output should appear exactly the same as before.

Copy Your Program
Let’s now switch focus a little and look at creating fields within the program. There are

two types of field to look at here, Variables and Constants.

Firstly, it will be necessary to generate a new program from the ABAP Editor. This can be

done either with the steps from the previous section, or by copying a past program. The

latter option is useful if you plan on reusing much of your previous code. To do this,

launch transaction SE38 again and enter the original program’s name into the ‘Program’

field of the ‘Initial’ screen, and then click the Copy button (CTRL + F5):

74

YOUR FIRST ABAP PROGRAM

A window will appear asking for a name for the new program, in this instance, enter

Z_EMPLOYEE_LIST_2 in the ‘Target Program’ input box, then press the Copy button. The

next screen will ask if any other objects are to be copied. Since none of the objects here

have been created in the first program, leave these blank, and click Copy. The ‘Create

Object Directory Entry’ screen will then reappear and, as before you should assign the

entry to ‘Local object’. The status bar will confirm the success of the copy:

The new program name will then appear in the ‘Program’ text box of the ABAP Editor

Initial screen. Now click the Change button to enter the coding screen.

The copy function will have retained the previous report name in the comment space at

the top of your program and in the initial REPORT statement, so it is important to

remember to update these. Also, delete the LINE-SIZE limit, so that this does not get in the

way of testing the program.

75

YOUR FIRST ABAP PROGRAM

Because there are a number of SELECT and WRITE statements in the program, it is worth

looking at how to use the fast comment facility. This allows code to be, in practical terms,

removed from the program without deleting it, making it into comments, usually by

inserting an asterisk (*) at the beginning of each line. To do this quickly, highlight the lines

to be made into comment and hold down CTRL + <. This will automatically comment the

lines selected. Alternatively, the text can he highlighted and then in the ‘Utilities’ menu,

select ‘Block/Buffer’ and then ‘Insert Comment *’. The selected code is now converted to

comment:

Delete most of the code from the program now, retaining one section to continue working

with.

Declaring Variables
A field is a temporary area of memory which can be given a name and referenced within

programs. Fields may be used within a program to hold calculation results, to help control

the logic flow and, because they are temporary areas of storage (usually held in the RAM),

can be accessed very fast, helping to speed up the program’s execution. There are, of

course, many other uses for fields.

76

YOUR FIRST ABAP PROGRAM

The next question to examine is that of variables, and how to declare them in a program.

A variable is a field, the values of which change during the program execution, hence of

course the term variable.

There are some rules to be followed when dealing with variables:

 They must begin with a letter.

 Can be a maximum size of 30 characters,

 Cannot include + , : or () in the name,

 Cannot use a reserved word.

When creating variables, it is useful to ensure the name given is meaningful. Naming

variables things like A1, A2, A3 and so on is only likely to cause confusion when others

come to work with the program. Names like, in the example here, ‘Surname’, ‘Forename’,

‘DOB’ are much better, as from the name it can be ascertained exactly what the field

represents.

Variables are declared using the DATA statement. The first variable to be declared here

will be an integer field. Below the section of code remaining in your program, type the

statement DATA followed by a name for the field - integer01. Then, the data type must be

declared using the word TYPE and for integers this is referred to by the letter i. Terminate

the statement with a period.

Try another, this time named packed_decimal01, the data type for which is p. A packed

decimal field is there to help store numbers with decimal places. It is possible to specify

the number of decimal places you want to store. After the ‘p’, type the word decimals and

then the number desired, in this instance, 2 (packed decimal can store up to 14 decimal

places). Type all of this, then save the program:

77

YOUR FIRST ABAP PROGRAM

These data types used are called elementary. These types of variables have a fixed length

in ABAP, so it is not necessary to declare how long the variables need to be.

There is another way of declaring variables, via the LIKE addition to the DATA statement.

Declare another variable, this time with the name packed_decimal02 but, rather than

using the TYPE addition to define the field type, use the word LIKE, followed by the

previous variable’s name “packed_decimal01”. This way, you can ensure subsequent

variables take on exactly the same properties as a previously created one. Copy and paste

this several times to create packed_decimal03 and 04.

If you are creating a large number of variables of the same data type, by using the LIKE

addition, a lot of time can be saved. If, for example, the DECIMALS part were to need to

change to 3, it would then only be necessary to change the number of decimals on the

original variable, not all of them individually:

Additionally, the LIKE addition does not only have to refer to variables, or fields, within the

program. It can also refer to fields that exist in tables within the SAP system. In the table

we created there was a field named ‘Surname’. Create a new variable called

new_surname using the DATA statement. When defining the data type use the LIKE

addition followed by zemployees-surname. Defining fields this way saves you from having

to remember the exact data type form every field you have to create in the SAP system.

Check this for syntax errors to make sure everything is correct. If there are no errors

remove the new_surname, packed_decimal02, 03 and 04 fields as they are no longer

needed.

With another addition which can be made to the DATA statement, one can declare initial

values for the variables defined in the program. For the “integer01” variable, after “TYPE

i”, add the following addition: VALUE 22. This will automatically assign a value of 22 to

78

YOUR FIRST ABAP PROGRAM

“integer01” when the program starts.

For packed decimal fields the process is slightly different. The VALUE here must be

specified within single quotation marks, ‘5.5’ as without these, the ABAP statement would

be terminated by the period in the decimal. Note that one is not just limited to positive

numbers. If you want to declare a value of a negative number, this is entirely possible:

Constants
A constant is a variable whose associated value cannot be altered by the program during

its execution, hence the name. Constants are declared with the CONSTANTS statement

(where the DATA statement appeared for variables). When writing code then, the

constant can only ever be referred to; its value can never change. If you do try to change a

Constant’s value within the program, this will usually result in a runtime error.

The syntax for declaring constants is very similar to that of declaring variables, though

there are a few differences. You start with the statement CONSTANTS. Use the name

myconstant01 for this example. Give it a type p as before with 1 decimal place and a value

of ‘6.6’. Copy and paste and try another with the name myconstant02, this time a

standard integer (type ‘i’) with a value of 6:

(A note: one cannot define constants for data types XSTRINGS, references, internal tables

or structures containing internal tables.)

79

ARITHMETIC

Chapter 4

Arithmetic – Addition
Now that the ability to create variables has been established, these can be used for

calculations within a program. This chapter will begin by looking at some of the simple

arithmetical calculations within ABAP.

Our program will be tidied up by removing the two constants which were just created. If a

program needs to add two numbers together and each number is stored as its own unique

variable, the product of the two numbers can be stored in a brand new variable titled

“result”.

Create a new DATA statement, name this “result” and use the LIKE statement to give it the

same properties as packed_decimal01, terminating the line with a period.

To add two numbers together, on a new line, type “result = integer01 +

packed_decimal01.” On a new line enter, “WRITE result.” Activate and test the program,

and the result will appear in the output screen:

80

ARITHMETIC

Things to remember: For any arithmetical operation, the calculation itself must appear to

the right of the =, and the variable to hold the result to the left. This ensures that only the

result variable will be updated in the execution. If the variable titled “result” had been

assigned a value prior to the calculation, this would be overwritten with the new value.

Spaces must always be inserted on either side of the = and + signs. This applies to all

arithmetical operators, including parentheses (), which will start to be used as the

calculations become more complicated. Note that one space is the minimum, and multiple

spaces can be used, which may help in lining code up to make it more readable, and

indeed where calculations may be defined over many lines of code.

It is not just the products of variables which can be calculated in calculations, but also

individual literal values, or a mixture of the two, as shown here:

Arithmetic – Subtraction
To subtract numbers, the same method is used, replacing the + with a -. Copy and paste

the previous calculation and make this change. Also, to make this simpler to understand,

change the value of packed_decimal01 from -5.5 to 5.5. One can see by doing this the way

that changing the initial variable will alter the calculation.

Execute the code:

81

ARITHMETIC

Arithmetic – Division
To divide numbers, the same method is followed, but the arithmetical operator this time

will be a /

Arithmetic – Multiplication
To multiply, the operator is a *

Additionally to these methods, the statements ADD, SUBTRACT, DIVIDE and MULTIPLY

can be used. The syntax for these is slightly different. Beneath the first calculation (where

integer01 and packed_decimal01 where added), write a new line of code

“ADD 8 to result.” (Ignore the comment line in the image):

While this is a legitimate method for calculations, it must be added that this is very rarely

used, as the initial method is much simpler.

82

ARITHMETIC

Conversion Rules
In this program, different data types have been used when declaring variables. It is the

responsibility of the programmer to ensure the data types used are compatible with one

another when used for calculations or moving data to and from objects. One should not

attempt calculations with variables and numbers which do not match.

For example, a variable defined as an integer cannot be multiplied by a character, as these

two data types are incompatible. This would cause the system to generate syntax and

runtime errors when the program is executed. While SAP has built in automatic data type

conversions for many of the standard data types within ABAP, there are scenarios where

the inbuilt conversion rules are not appropriate. It is important to become familiar with

the inbuilt conversion rules and know when to manipulate the data prior to using them in

calculations. Here, some examples of conversion rules will be given, so that they can be

used throughout programs created.

Conversion rules are pre-defined logic that determine how the contents of the source field

can be entered into a target field. If one attempts to insert an integer field containing the

value of 1 to a character string, the built-in conversion rules will determine exactly how

this should be done without any syntax or runtime errors.

For example, create a DATA statement with the name “num1” of TYPE p (packed decimal)

with DECIMALS 2 and a VALUE of ‘3.33’. Then create another variable with the name

“result1” of type i (integer). Attempt the calculation “result1 = num1”. The conversion

rule here would round the number to the closest integer, in this case 3.

As you work with different data types, these kinds of conversion rules will often be applied

automatically, and it is up to you, the programmer, to understand these conversion rules

83

ARITHMETIC

and the data types used within the program to ensure no runtime errors occur.

Division Variations
Now, a slight step back will be taken to discuss the division operator further. In ABAP,

there are three ways in which numbers can be divided:

 The standard result with decimal places

 The remainder result

 The integer result.

The standard form of division.

Create 2 variables, “numa” and “numb”, with values of 5.45 and 1.48 respectively, then

create the variable “result2” (also with 2 decimal places). Then insert the calculation

“result2 = numa / numb.” followed by a WRITE statement for result2. Execute the

program.

The integer form of division.

Copy the initial calculation; change the initial variables to “numc” and “numd” and the

resulting variable to “result3”. For integer division, rather than using the standard /, use

the operator DIV. This will give the result of the calculation’s integer value, without the

decimal places.

84

ARITHMETIC

The remainder form of division.

Follow the steps from the integer form, this time with “nume”, “numf” and “result4”. For

this type of division, the arithmetical operator should be MOD. This, when executed, will

show the remainder value.

85

CHARACTER STRINGS

Chapter 5 – Character Strings

Declaring C and N Fields
This chapter will discuss character strings. When creating programs, fields defined as char-

acter strings are almost always used. In SAP, there are two elementary data types used for

character strings. These are data type C, and data type N.

Data type C.

Data type C variables are used for holding alphanumeric characters, with a minimum of 1

character and a maximum of 65,535 characters. By default, these are aligned to the left.

Begin this chapter by creating a new program. From the ABAP Editor’s initial screen, cre-

ate a new program, named “Z_Character_Strings”. Title this “Character Strings Exam-

ples”, set the Type to ‘Executable program’, the Status to ‘Test program’, the Application

to ‘Basis’, and Save.

Create a new DATA field, name this “mychar” and, without any spaces following this, give

a number for the length of the field in parentheses. Then, include a space and define the

TYPE as c

This is the long form of declaring a type c field. Because this field is a generic data type,

the system has default values which can be used so as to avoid typing out the full length of

the declaration. If you create a new field, named “mychar2” and wish the field to be 1

character in size, the default field size is set to 1 character by default, so the size in brack-

ets following the name is unnecessary. Also, because this character field is the default

type used by the system, one can even avoid defining this. In the case of mychar2, the

variable can be defined with only the field name. The code in the image below performs

exactly the same as if it was typed “data mychar2(1) type c”:

86

CHARACTER STRINGS

In the previous chapter, the table “zemployees” included various fields of type c, such as

“zsurname”. If one uses the TABLES statement followed by zemployees, then by double-

clicking the table name to use forward navigation and view the table, one can see that the

“surname” field is of data type CHAR, with length 40. This declaration can be replicated

within the ABAP program:

Return to the program, and in place of mychar2, create a new field named “zemploy-

ees1”, with a length of 40 and type c. This will have exactly the same effect as the previous

declaration. Referring back to previous chapter, another way of doing this would be to use

the LIKE statement to declare zemployees (or this time zemployees2) as having the same

properties as the “surname” field in the table:

Data type N.

The other common generic character string data type is N. These are by default right-

aligned. If one looks at the initial table again, using forward navigation, the field named

“employee”, which refers to employee numbers, is of the data type NUMC, with a length

of 8. NUMC, or the number data type, works similarly to the character data type, except

with the inbuilt rule to only allow the inclusion of numeric characters. This data type, then,

is ideal when the field is only to be used for numbers with no intention of carrying out cal-

culations.

To declare this field in ABAP, create a new DATA field named “znumber1”, TYPE n. Again,

alternatively this can be done by using the LIKE statement to refer back to the original

field in the table.

87

CHARACTER STRINGS

String Manipulation
Like many other programming languages, ABAP provides the functionality to interrogate

and manipulate the data held in character strings. This section will look at some of the

popular statements which ABAP provides for carrying out these functions:

 Concatenating String Fields

 Condensing Character Strings

 Finding the Length of a String

 Searching for Specific Characters

 The SHIFT statement

 Splitting Character Strings

 SubFields

Concatenate
The concatenate statement allows two character strings to be joined so as to form a third

string. First, type the statement CONCATENATE into the program, and follow this by speci-

fying the fields, here “f1”, “f2” and so on. Then select the destination which the output

string should go to, here “d1”. If one adds a subsequent term, [separated by sep] (“sep”

here is an example name for the separator field), this will allow a specified value to be in-

serted between each field in the destination field:

Note: If the destination field is shorter than the overall length of the input fields, the char-

acter string will be truncated to the length of the destination field, so ensure when using

the CONCATENATE statement, the string data type is being used, as these can hold over

65,000 characters.

As an example, observe the code in the image below.

88

CHARACTER STRINGS

The first 3 fields should be familiar by now. The fourth is the separator field, here again

called “sep” (the size of sep has not been defined here, and so it will take on the default

which the system uses - 1 character). The last field is titled “destination”, 200 characters

long and of data type c.

Below this section is the CONCATENATE statement, followed by the fields to combine to-

gether into the destination field. The WRITE statement is then used to display the result.

Executing this code will output the following:

Note that the text has been aligned to the left, as it is using data type c. Also, the code did

not include the SEPARATED BY addition, and so the words have been concatenated with-

out spaces. This can be added, and spaces will appear in the output:

Condense
Next, the CONDENSE statement. Often an ABAP program will have to deal with large text

fields, with unwanted spaces. The CONDENSE statement is used to remove these blank

characters.

Now, observe the code below:

89

CHARACTER STRINGS

This should, of course, be mostly familiar from the last section, with the addition of the

new, 20-character “spaced_name” field, with large spaces between the individual words.

Below we have an example of using the CONDENSE statement using our new variable:

The CONDENSE statement will remove the blank spaces between words in the variable,

leaving only 1 character’s space:

NO-GAPS

An optional addition to the CONDENSE statement is NO-GAPS, which as you may guess,

removes all spaces from our variable.

Find the Length of a String
To find the length of a string, a function rather than a statement is used. Added beneath

the previous data fields here, is a new one titled “len”, with a TYPE i, so as to just hold the

integer value of the string length.

90

CHARACTER STRINGS

The code to find the length of the ‘surname’ field and display it in the ‘len’ field appears

like this, with “strlen” defining the function:

The output, then, will appear like this:

Replace
Below I have created the “surname2” field and is 40 characters in length. Note that no

TYPE has been defined, so the system will use the default type, c:

Some text is then moved into the field after which the REPLACE statement is used to re-

place the comma with a period:

One thing to note here is that the REPLACE statement will only replace the first occurrence

in the string. So if, for example, the surname2 field read “Mr, Joe, Smith”, only the first

comma would be changed. All occurrences of comma’s could be replaced by making use

of a while loop, which will be discussed later on.

Search
Next, a look will be taken at searching for specific character strings within fields. Unsur-

prisingly, the statement SEARCH is used for this.

91

CHARACTER STRINGS

All that is needed is to enter SEARCH followed by the field which is to be searched, in this

instance the surname2 field. Then the string which is to be searched for, for example,

‘Joe’:

Note that here no variable has been declared to hold the result. In the case of the SEARCH

statement, two system variables are used. The first is “sy-subrc”, which identifies whether

the search was successful or not, and the second is “sy-fdpos”, which, if the search is suc-

cessful, is set to the position of the character string searched for in surname2. Below, a

small report is created to show the values of the system variables.

SEARCH Example 1

The first SEARCH statement, below, indicates that the surname2 field is being searched,

for the character string ‘Joe ‘. The Search statement will ignore the blank spaces. The

output will show the string being searched for, followed by the system variables and the

value results. In this case, the search should be successful.

SEARCH Example 2

The next example is very similar, but the full stops either side of ‘.Joe .’ mean that the

blank spaces this time will not be ignored and the system will search for the full string,

including the blanks. Here, the search will be unsuccessful, as the word ‘Joe’ in the

Surname2 field is not followed by four blank spaces.

92

CHARACTER STRINGS

SEARCH Example 3

This third search uses a wild card character ‘*’ and will search for any words ending in

‘ith’. This, again, should be successful.

SEARCH Example 4

The last example also uses the wild card facility, this time to search for words beginning

with ‘Smi’, which again should be successful. Compare the places in the code where the *

appears in this and the previous example.

Run a test on these searches, and output returns as follows:

When the sy-subrc = 0 this refers to a successful search. When sy-subrc = 4 in the second

example this indicates that the search was unsuccessful.

93

CHARACTER STRINGS

In the first search, the sy-fdpos value of 3 refers to the third character in the surname2

field, the offset, and the search term appears one character after this. The failure of the

second search means that a 0 is displayed in the sy-fdpos field. The value of 7 in the sy-

fdpos fields for the final two searches both mean that the word ‘Smith’ was found, corre-

sponding to the search terms, and that the searched word appears 1 character after the

offset value.

Shift
The SHIFT statement is a simple statement that allows one to move the contents of a

character string left or right, character by character. In this example, a field’s contents will

be moved to the left, deleting leading zeros. Declare a new DATA variable as follows:

“empl_num”, 10 characters long, and set the content of the field to ‘0000654321’, filling

all 10 characters of the field:

Using the SHIFT statement, then, the 4 zeros which begin this character string will be re-

moved, and the rest moved across to the left. Type the statement SHIFT, followed by the

field name. Define that it is to be shifted to the left, deleting leading zeros (don’t forget

the help screen can be used to view similar additions which can be added to this state-

ment). Then include a WRITE statement so that the result of the SHIFT statement can be

output. To the right of the number here, there will be four spaces, which have replaced

the leading zeros:

94

CHARACTER STRINGS

If no addition to the SHIFT statement is specified, the system will by default move every-

thing just one character to the left, leaving one space to the right:

The CIRCULAR addition to the SHIFT statement will cause, by default, everything to move

one space to the left again, but this time the character which is displaced at the beginning

of the statement will reappear at the end, rather than leaving a blank space:

Split
The SPLIT statement is used to separate the contents of a field into two or more fields.

Observe the code below:

95

CHARACTER STRINGS

The first section contains several DATA statements, “mystring”, “a1”, “a2”, “a3” and

“sep2”, along with their lengths and types. “Sep2” here is a separator field, with a value of

‘**’.

“mystring” is then given a value of ‘ 1234** ABCD **6789’, followed by a comment line

(which the program will ignore), then a WRITE statement, so that this initial value appears

in the output followed by a blank line, using the SKIP statement.

The SPLIT statement appears, followed by the name of the string which is to be split. The

AT addition appears next, telling the program that, where “sep2” appears (remember the

value of this is ‘**’), the field is to be split. Following this, the INTO then specifies the

fields which the split field is to be written to. The slightly odd positioning of the spaces in

the value of “mystring” will, when the statement is output, make clear the way that the

SPLIT statement populates the fields which the data is put into. Execute the code, and this

is the result:

You can see that the initial field has been split into a1, a2 and a3 exactly where the ** ap-

peared, leaving a leading space in the first two fields, but not in the third. Additionally, on

closer inspection there are blank spaces following the numbers in each field up to its de-

fined length, which is 10.

This next example shows the initial value of “mystring” now is made into a comment line,

and the comment line becomes part of the code:

96

CHARACTER STRINGS

‘mystring’ now contains the original contents plus a further set of characters. While the

contents are still to be split into 3 fields, the data suggests it should be split into 4. In this

case, with less fields than those defined, the system will include the remainder of the

string in the final field. Note that if this field is not long enough for the remainder, the re-

sult would be truncated.

SubFields
Within ABAP, you have the option of referring to specific characters within a field. This is

referred to as processing subfields, whereby a specific character’s position within its field

is referenced. Again, observe the code below:

To start with, new DATA variables are declared, “int_telephone_num”, “country_code”

and “telephone_num”, along with lengths and types. Following this, a character string is

assigned to int_telephone_num, a WRITE statement for this string and a blank line.

97

CHARACTER STRINGS

Next, the subfield processing appears. The first line states the country_code field is to be

filled with the first 3 characters of the int_telephone_num field, indicated by the number

in brackets.

Then, the field telephone_num is to be filled with 13 characters of the int_telephone_num

field, starting after the 4th character. The +4 part of the code here refers to where the field

is to begin. Then we have WRITE statements for both of the fields.

This last example indicates that the specific characters of int_telephone_num moved to

the country_code field will be replaced, after the first character, by the literal, 2-character

value ‘01’, showing that a subfield can itself be edited and updated without changing the

initial field. The results should look like this:

Subfields are regularly used in SAP to save time on creating unnecessary variables in

memory. It is just as easy to use the subfield syntax.

98

DEBUGGING PROGRAMS

Chapter 6 – Debugging Programs

This chapter will introduce the ABAP debugger, and will introduce some of the tools which

can be used to ensure that the programs you create function as intended. It will also show

ways to highlight logic bugs in programs that cannot be identified by the syntax checker.

The first step here is to load a program which has been used previously, and which ac-

cesses the database table which has been created regarding employee records. If you

have been following along with instructions, load program “Z_Employee_List_01” into the

ABAP Editor.

The program contains a number of SELECT loops, which in turn write the contents of the

table being read to the output screen in several ways, separated by ULINE statements:

Having examined the code, return to the front screen of the ABAP editor.

99

DEBUGGING PROGRAMS

Firstly, on this screen you will notice there is a ‘Debugging’ button in the toolbar (also ac-

cessible with SHIFT+F5):

Click this with the program name in the program input text box to start a new debugging

session. When this opens, a blue arrow should be visible, pointing at the first line of code

in the program:

An alternative way of starting a debugging session is to display the code itself from the

initial screen, select a line of code and set a breakpoint. This is done by, having selected a

line, clicking the Stop icon:

This sets a breakpoint for that line. When the program is then executed the execution will

pause highlighting the line that has the Breakpoint set entering the debugging session.

Usually, this is the easiest method to use, as one will often have a good idea of where the

100

DEBUGGING PROGRAMS

issues in a program are allowing you to focus on specific areas of code straight away,

rather than starting from the very beginning of a program as the previous method does:

There are two types of breakpoint which can be set in a program. Static (which will be ex-

amined later) and dynamic. A dynamic breakpoint is the kind which was used above, and

these are only valid for the current session. If one leaves the SAP GUI and returns later,

any dynamic breakpoints set will no longer exist. A breakpoint can also be set by double-

clicking any statement within the debugging session itself. To then remove these in the

session, simple double-click the stop icon appearing adjacent to them.

You will notice that a number of buttons appear at the top of the debugging screen:

These buttons allow for different modes of the ABAP debugger to be entered. The default

mode here is Fields.

The ‘Single step’ button, the first on the left in the row above the modes, also accessible

with F5, allows one to go through the code within the debugger line-by-line, or indeed as

its name would suggest, single steps. As one presses the button, the blue arrow on the left

of the code will move down one line at a time.

The next button along is the ‘Execute’ button, with a shortcut of F6. This allows for inde-

pendent sections of code to be executed, such as function modules or forms. This can be

very useful. If a program includes existing sections of code already created in an SAP sys-

101

DEBUGGING PROGRAMS

tem which are known to be correct, there is no need to debug them. These can then be

executed independently, while other parts are debugged to find specific problems.

The next button is the ‘Return’ function (F7). This can be very useful if one forgets to use

the ‘Execute’ function. If one goes through the lines of a program step-by-step, using the

F5 key to step into a working function module, which may contain many lines of code, it is

likely the case that it does not need to be debugged (because you know this function

module already exists). Pressing the F5 key endlessly to go through the lines of code here

is unnecessary when one wants to step out of this function module and access the parts

which require debugging. Using the ‘Return’ button, all of the code within a specific func-

tion can be executed, returning to the line of code which calls that function.

The fourth in the row is the ‘Continue’ option (F8). This allows one to continue the pro-

gram without going through step-by-step, line-by-line. When this button is pressed, the

program executes and the output screen is shown. This button can also be used to just

access a selected line of code, where the cursor is positioned. If one positions the cursor in

a line of code and presses continue, the blue arrow in the debugger will appear directly

next to that line. If you then press continue again, the program will be executed.

The next option in this row of the toolbar is ‘Display list’, accessible with CTRL+F12. This

takes you to the output screen as it currently stands within the debug session. Here, the

code has been executed to output the result of the first SELECT statement in the program:

This function allows you to see the results of the reports whilst the program is in mid-flow.

The last option here is ‘Create watchpoint’ (SHIFT + F8). Watchpoints will be returned to

soon.

102

DEBUGGING PROGRAMS

Fields mode
The ‘Fields’ mode of the ABAP debugger allows the contents of fields to be checked and

modified as the program is debugged. This can be accessed either by double-clicking the

field name within the code itself, or entering it into the ‘Field names’ section below the

code:

Note that, since here a table is involved, in the field name section the name of the table

must first be specified, followed by a -, then the name of the field. The field contents will

be filled in automatically. As you step through code line-by-line in the SELECT loop, the

text held in each field will change as each loop completes and moves onto the next record

in the table. This section allows for 8 fields to be monitored at any time. Fields 5 - 8 can be

made visible via the navigation buttons in the middle (to the right of the numbers 1 – 4).

Often when debugging a program, you may want to manually change the contents of

fields. This can be achieved by replacing the text in the field contents area, then clicking

the ‘Change field contents’ icon, marked with a pencil. Doing this can save a lot of time,

avoiding having to exit the debugging session multiple times to enter new values into

fields elsewhere:

103

DEBUGGING PROGRAMS

System Variables
At the bottom of the debugger screen, are 3 fields, named ‘SY-SUBRC’, ‘SY-TABIX’ and ‘SY-

DBCNT’:

Note that the value boxes here are greyed-out, meaning that they cannot be changed

manually. These are system fields, belonging to a table called SYST. This system table in-

cludes many system fields which are filled in at runtime. These system fields are filled in

automatically while the program is executed. Most statements within ABAP will cause

these system fields to be filled with 0 when executed successfully. It is important to re-

member that these fields are completely statement-dependent, meaning that they will

contain different values depending on which statement is executed. These system codes

and variables will be looked at in greater depth later.

Table Mode
The second mode along from the Fields button on the left of the screen is Table mode.

Click this button and the code remains, but the bottom section changes to include an ‘In-

ternal table’ entry, and a single row:

Internal tables have not yet been covered in depth, but, put simply; an internal table is a

table of records which is stored in memory while the program is running. Table mode al-

lows one to interrogate the records and fields of each record in an internal table. As with

104

DEBUGGING PROGRAMS

Fields mode, the internal table can either be double-clicked in the code, or manually en-

tered into the ‘Internal table’ box.

If one does this for “zemployees”, then, a new window appears, displaying the table

name, its individual fields and their contents:

Things do look slightly different to normal here, as a table structure is being shown, rather

than an actual internal table. This results in the debugger showing the table structure as

above, listing the individual fields numbered 1 – 6 and their contents. When viewing an

internal table in this mode, one will see a number of records for each internal table with

their contents. These records can then be double-clicked to move to the above layout,

showing the individual fields for each record. This will be returned to later.

In this screen, the code remains, but the area in which it is displayed is very small. One can

continue to interrogate the code line-by-line as before still, but this may prove difficult. It

is usually simpler to check Table mode for the information required, and then click back to

Fields mode to continue the debug session.

105

DEBUGGING PROGRAMS

Breakpoints
Click the Breakpoint mode button in the ABAP debugger screen. This allows you to see a

list of the individual breakpoints which have been set. Double-clicking any breakpoint in

the Breakpoints table will remove that breakpoint from the list:

This breakpoint table can be very useful, particularly when one is in a large program with

many breakpoints set. It allows one to review the breakpoint, and allows for the removal

of breakpoints which are no longer desired.

It is important to remember that breakpoints (and indeed Watchpoints) are only valid for

the length of the current debug session. When you exit your session, the breakpoints will

be deleted. However, an option does exist allowing you to save breakpoints (and, again,

Watchpoints) before closing a debug session, keeping them active for the next time the

program is to be debugged, saving the hassle of recreating them. This is done by entering

106

DEBUGGING PROGRAMS

the ‘Breakpoint’ menu in the top toolbar and choosing ‘Save’. All of the breakpoints saved

will then remain until they are manually removed, or until the end of your SAP session.

 If one is in the ABAP editor, it is possible to see an overview of all the dynamic break-

points set in the program by accessing the following menu option: Utilities Breakpoints

 Display:

107

DEBUGGING PROGRAMS

The options at the bottom of this breakpoint table allow one to delete selected break-

points without entering the debugger and breakpoints can be navigated to in the program

itself (within the ABAP editor) by double clicking them in this table.

Static Breakpoints
Static breakpoints were briefly alluded to earlier. These refer to a line of code written into

a program which forces the program to enter debug mode at the specific line chosen. To

do this, the statement BREAK-POINT is used. When the code is executed, the debug ses-

sion will start with the usual blue arrow cursor pointing at the location of the static break-

point.

108

DEBUGGING PROGRAMS

Once this statement is embedded in a program, it is active for all users. This is largely un-

desirable, as others running the program, who do not want to debug the code, would be

faced with the breakpoint set by an individual user. Be careful not to leave this statement

line in programs which will be transported to other systems.

Watchpoints
Click the Watchpoints button in the ABAP debugger. The program code will be visible

above the Watchpoints table in the lower half of the screen. Breakpoints have previously

been discussed, and can be very useful, but are not always the ideal tool to use to pause

code execution, interrogate the contents of individual fields and internal tables and ana-

lyse the program’s logic.

Imagine the program was processing a table containing 1000 records, and one wanted to

debug the logic only when a certain condition occurs. This condition is dependent upon

the data held in the records being processed. By using breakpoints, one would have to

debug each individual record, obviously taking a huge amount of time. Here, Watchpoints

become useful. Using these, one can tell the program to stop in the same manner that it

would for a breakpoint, but instead of stopping at a specific line of code, it would stop

based on the value in a field. In this example then, if this value occurred only in the 200th

line of the table, a watchpoint would allow the first 199 records to be skipped over.

A watchpoint is created with the ‘Create watchpoint’ button, seen above the list of modes

in the Watchpoint mode screen, or with SHIFT + F8.

Once this is done, a dialogue box will appear, with the program name filled in automati-

cally. Here you need to enter the name of the field to be watched. In the

Z_EMPLOYEE_LIST_01 example here, we will enter the surname field. The format is TA-

BLE_NAME-FIELD_NAME. Next, the relational operator is to be set. In this example, a sur-

109

DEBUGGING PROGRAMS

name with the value “Mills” will be sought, so the operator here is an =. This can be se-

lected from a drop-down menu, where one can also view other potential relational opera-

tors. The bottom field, then, should be filled in with the value to be watched for.

Note that one does not have to use a specific value in the bottom field, but can get a

watchpoint to compare a field against another field within the program. To do this the

‘Comparison field’ box should be checked, and the field name typed into the box rather

than a specific value.

Click the green tick to continue and create the watchpoint, and the entry will have been

added to the list at the bottom of the screen:

110

DEBUGGING PROGRAMS

Observe the boxes below the Watchpoints list here. They are currently empty, but when

the program is executed, it will pause once a value of ‘Mills’ is reached in the ‘surname’

field and this will be included in the box.

The output before the program is executed looks like this:

Note that the surname Mills appears in the fifth row down. When the program is executed

with the ‘Mills’ watchpoint set, the first four records will be written to the screen before

pausing at the fifth, when Mills is displayed.

You will see that the blue arrow cursor has paused at the SELECT loop in the code.

111

DEBUGGING PROGRAMS

Enter zemployees-surname in the Fields mode of the debugger to view the contents of the

field. You will see the field contains “MILLS”. Also in the Watchpoints mode, the bottom

field will now be filled:

Ending a Debug Session
There are two ways to stop debugging a program. The first is to use the F8 key to run the

program all the way through to the end. Keep in mind though, that if any break or Watch-

points are set, the execution will likely pause and have to be started again, perhaps multi-

ple times. Also this method depends entirely upon the program executing successfully. If

any runtime errors are caused, the debug session will terminate and return you to the SAP

menu screen.

The alternative way of stopping the debugger is to enter the ‘Debugging’ menu and

choose ‘Restart’. This way, no more of the program will be executed, and you can return

to the ABAP Editor’s initial screen:

112

DEBUGGING PROGRAMS

113

ENHANCING DATABASE TABLES

Chapter 7: Working with Database Tables

Making a Copy of a Table
This chapter will look at ways in which one can change the transparent tables created ear-

lier. It is important to know how to do this, and the implications of adding and taking away

fields for the underlying data in a database table.

Let’s take a look at the ZEMPLOYEES table created in Chapter 2. In the SAP GUI, key in

transaction code SE11 to access the ABAP dictionary, then display the table:

It is important to realise that whenever one wants to change a database table, there is a

risk of losing data, especially where key fields in the table are being affected. The database

system itself will try to determine whether adjustments can be made by deleting and cre-

ating new items which change the underlying database catalogue, or whether what has

already defined has to be re-implemented.

Quite often, when working with large tables, one has to manage the manipulation of the

data oneself, so as to be sure that data is not lost. Deleting fields is quite a simple task, the

table structure and its contents can add certain complications. Before starting any data-

base change tasks, it is important to mitigate against as many risks as possible, and start

114

ENHANCING DATABASE TABLES

by using a copy of the database table, allowing one to test out any changes one may want

to make, without affecting the initial table and its underlying data.

When you copy a database table, it is only the structure itself which is copied, meaning

only its properties - fields and so on, not the actual data.

Step back to the initial SE11 screen. With ZEMPLOYEES in the Database table field, click

the Copy button, then give the new table of ZEMPLOYEES2. The ‘Create Object Directory

Entry’ box will appear and as before, select ‘Local Object’:

A copy of the table has now been created. Choose display at the SE11 screen and the copy

will appear. The table’s status will read as ‘New’. It must be activated, so click the ‘Change’

button (the Pencil icon in the toolbar), and then Activate:

Note that all of the fields in the table, since they have been copied, are already active. This

is why it is only the table itself which has to be activated here. If you try to look at the ta-

115

ENHANCING DATABASE TABLES

ble, you will find there are no contents, because only the structure was copied, not the

underlying data. To create records, from the ‘Utilities’ menu, select ‘Table Contents’ and

then ‘Create Entries’ to display the screen where the records for the table can be created

as before.

Insert some records, click the Contents button, and then view the new table:

116

ENHANCING DATABASE TABLES

Add New Fields
Next, a new field will be added. This will be a non-key field and will be called INITIALS.

Create a new Data element for this named ZINITIALS using forward navigation. For the

data element, set the short text to ‘Initials’ and set the domain to CHAR03 (a character

string of length 3). In the Field label boxes type ‘Initials’, then activate the Data element.

The table should now have a new field like this:

Create another 3 more new fields and configure them as follows:

 Field Name ‘GENDER’

o Set the Data element to ‘ZGENDER’. Configure the data element as follows:

 Short text: ‘Gender’

 Domain: ‘CHAR01’

 Field labels set to ‘Gender’

 SALARY

o Set the Data element to ZSALARY

 Short text: ‘Salary’

 Domain: ‘CURR9’ (This has a length of 9, with 2 decimal places)

 Field labels set to ‘Salary’.

One thing to note about the Salary field is that, because it is a currency, another field for

this currency must be created and attached to ZSALARY to indicate what currency the sal-

ary is in. If you try to activate the table without doing this, an error message will appear

asking for a reference field to specify the currency.

117

ENHANCING DATABASE TABLES

Create a new field called ECURRENCY. Currency fields should already exist in the system,

so the Data element here will be a pre-existing one named CURCY. Type this, press enter

and the remaining fields should fill in automatically, leaving the new section of the table

looking like this:

Next, the system must be told that the Salary field is referencing the Currency field. Above

the table will be able to see a tab labelled ‘Currency/Quantity Fields’. Click this and the

table will be shown with two boxes to be filled in for the Salary field, since it has already

been specified that the domain for this field is Currency. In the ‘Reference table’ column

enter the name of the table, ‘ZEMPLOYEES2’ and in the ‘Reference field’ column, the

name of the new Currency Key, ‘ECURRENCY’. Now the table can be activated error free.

Foreign Keys
As shown earlier enter a new record. You will see that the currency key does not offer any

kind of drop-down menu, here for this example, type GBP, indicating Great British Pounds:

118

ENHANCING DATABASE TABLES

Save the record, and then return to the design of the table, where we can now add some

error-checking to ensure that valid entries are made in the Currency key field.

To enable error-checking on the currency key field, we need to make use of a Foreign Key.

These are used to ensure that only valid values can be entered into a field. Use forward

navigation on the CURCY data element. Look at the Data type tab and you will see that the

data element refers to a standard SAP domain, WAERS:

Double-click the WAERS domain to use forward navigation again. Look at the ‘Value range’

tab in this window, a ‘Value table’ box is visible at the bottom, labelled TCURC:

119

ENHANCING DATABASE TABLES

A Value table can be used to determine the entries that can be made in the field based on

this domain. Double-click TCURC to again use forward navigation and this value table will

be displayed.

Use the data browser to look at the data in this table. If you scroll down, the GBP value

from before can be found, among a number of others. This table can be used to ensure

that, in future, only entries found in this table can be entered into our new table ZEM-

PLOYEES2

120

ENHANCING DATABASE TABLES

Return to the ‘Maintain table’ screen for ZEMPLOYEES2, highlight the ECURRENCY field,

and click the Foreign key button visible in the toolbar above:

Choose ‘Yes’ in the box which appears and a ‘Create Foreign Key’ window will emerge.

Type the short text ‘Check Currency Field’. A small table is visible, detailing the two key

fields from the TCURC table and the ZEMPLOYEES2 table. The option is available to ensure

that the foreign key matches both fields, so that when the user is allowed to select an en-

try, the records returned will only be valid for the Client which is being worked in.

Here though, the Client is not to be chosen as part of the key, so select the Check-box

‘Generic’ for the top row, which refers to the Client, and remove the text from the two

boxes on this row where this is possible. Then click the ‘Copy’ button. The foreign key will

be created:

121

ENHANCING DATABASE TABLES

Activate the table, and then browse the data. Now, select the currency key and either

press the F4 key or select the drop-down box that appears, displaying all valid entries for

this field. If you were in record change mode you will then be able to select a value from

the table and see it update your zemployees 2 record. Try it out and select USD (US Dol-

lar).

122

ENHANCING DATABASE TABLES

Append Structures
Having looked at foreign keys, the next thing to look at are Append structures. These can

be used to add additional fields. This is the preferred method for maintaining SAP deliv-

ered tables and quite often for customer-specific tables. If one does not use Append struc-

tures, problems can arise if, for example, a new version of SAP is used which does not cor-

respond with aspects of the tables already created, resulting in serious errors.

Append structures give a safe way to enhance tables. When these are used, the initial ta-

ble remains unchanged, removing any risk of changes being overwritten later if a different

version of SAP is used. Quite often, a table may have multiple Append structures applied

to it, because different development needs have arisen as time has gone by and people

have wanted to add further fields to the standard SAP tables.

In the SE11 Maintain Table screen, go to the ‘Append structure’ button on the right of the

top toolbar:

123

ENHANCING DATABASE TABLES

Click this, and the system will suggest a name, ZAZEMPLOYEES2 (note that this, again,

must begin with a Z). Accept this and you will be presented with what looks like an empty

table structure. Enter the Short text “Extra Fields For Employees”, and then move down to

the table.

Note that the first field now is called ‘Component’. This is where new fields are created.

However, it may be useful to differentiate between fields created in the main table, and

the new components created here in the Append structure. Since both must comply with

the customer name rules, where Z was used in the main table, here use ZZ.

For the first component, a ‘Department’ field will be created. Type in the ‘Component’ box

‘ZZDEPT’ and the same again in ‘Component type’. For this Component type, use forward

navigation in the same way that it was used for the Data element before, double-clicking

to create. Save the Append structure as a local object when prompted, and then select to

create a Data element when prompted subsequently.

The familiar data element screen will now appear. Type ‘Department’ for the short text,

use CHAR10 for the domain and ‘Department’ again for the Field labels, then activate the

data element. Step back to the Append structure screen, then Activate:

Return to the main table screen, where a new row displaying the Append structure will

have been created. To then access this structure, simply double-click the row. In Change

mode only the ‘.APPEND’ line will be visible by default, but in Display mode the fields cre-

ated within this will appear below:

124

ENHANCING DATABASE TABLES

This is a very useful way to add new fields to a table without affecting the structure of the

table itself. If one then browses the data as normal, a new column will have been called

‘Department’. Data can then be entered into this field just like it can for any other:

Include Structures
Include structures are similar to Append structures, with the main difference being that

they are re-usable objects and can be linked to many other tables, ABAP programs, dia-

logue programs and structures. It is important to keep in mind that Include structures

must be flat structures, meaning that they cannot hold any additional structure within

them, and that the maximum length of the fields within an include structure is 16 charac-

ters.

There is no Include structure button in the way that there is an Append structure button.

To create one, first ensure Change mode is selected. Where the cursor is placed is impor-

tant here, as wherever the cursor is when the Include structure is created, it will be cre-

ated one row above. If you want the Include structure to be part of the table key, it must

appear at the top, because all table fields used as a table key need to be grouped together

at the top. In this instance though, it will just be inserted above the Append structure.

Place the cursor on the ‘.APPEND’ row, select the ‘Edit’ menu, then ‘Include’ and ‘Insert’.

125

ENHANCING DATABASE TABLES

In the window that appears, enter ‘ZEMPL’ in the ‘Structure’ field and click the continue

button. A warning box will appear stating that this is not yet active, dismiss this, and the

Include structure should now appear in the table:

To add a field to this, use forward navigation as before, double-clicking where ‘.INCLUDE

ZEMPL’ appears, save and choose ‘Yes’ to create the structure. The screen which then ap-

pears is very similar to the Append structure screen.

Type the Short text “Employee Include” and begin to create a field (the boxes are, like in

the Append structure, labelled ‘Component’), this time for location, called ZZLOCAT, and

use ZLOCAT for the ‘Component type’. Use forward navigation again to create this Data

element with Short text ‘Location’, the domain CHAR10 and ‘Location’ again for the Field

labels, then Activate this as usual. Activate the Include structure once the field has been

created and return to the main table to see the Include structure located just where we

wanted it, above the Append structure:

Activate the table now, and view the contents. The Location column should now be visi-

ble, and these records can now be edited and created like any other:

126

ENHANCING DATABASE TABLES

If one switches to Display mode, the field created in the Include structure can be seen in

the context of the main table, albeit in a different colour:

127

ENHANCING DATABASE TABLES

In Change mode, these fields can be seen by selecting the ‘.INCLUDE’ row and clicking the

‘Expand include’ icon (the same works for the Append structure also):

Key Fields
If you want to add or remove fields which are designated key fields, then it is important to

take into consideration what will be going on in the database itself. All of the new ele-

ments which have been created for this table have their features applied by the system to

the ABAP dictionary, not the underlying database. When any key field is adjusted, the sys-

tem has to apply changes to the underlying database itself. If there is data in the table,

and key fields are changed, this can have unintended consequences.

128

ENHANCING DATABASE TABLES

If you introduce a new key field, this will probably not have a large effect. However, if one

makes a key field no longer a key field, this will require consideration, because if there is a

lot of data in the underlying database, by taking away a key field, duplicate records could

be introduced. Corrupt data or records being deleted from the table can also happen here.

Let’s see how we can add, remove and alter fields without these hazards.

Open the full ZEMPLOYEES2 table in the ABAP Dictionary ‘Maintain Table’ screen. Let’s

change the ‘Surname’ field by turning it into a key field.

Check the two boxes (key and Index) by ‘SURNAME’ and Activate the table. When you now

view the table contents, the surname column will be a darker colour, indicating that it is

now a key field. Beyond this though, it appears very little has changed:

Now, uncheck the boxes on the ‘Maintain Table’ screen, to make it no longer a key field.

When you try to activate the table an error message appears, refusing to activate the ta-

ble as data may be lost with the removal of a key field:

129

ENHANCING DATABASE TABLES

To activate the table against what seem to be the wishes of the system (after all, one

knows the data will be fine as the surname field has not been operating as a key field at

any point previously), a different transaction must be used.

From the ‘Utilities’ menu, select ‘Database utility’, or use transaction code SE14. A new

screen will appear:

This transaction lets us automatically adjust the data held in our table when making ad-

justments to the database table structure. Environments where tables are being worked

on may contain a huge number of records. With this in mind, this transaction can be exe-

cuted as a background process. However, for our example the ‘Direct’ option is the option

130

ENHANCING DATABASE TABLES

to choose because we know we have very few records in our database table. Select this,

and then click ‘Activate and adjust database’ with ‘Save data’ radio button selected. Say

‘Yes’ when the box asks “Request: ‘Adjust’” and notice the status bar should indicate the

success of this execution. Then, step back to the ‘Maintain Table’ screen and you will see

the table should be Active with the surname field no longer key.

To insert a new field as part of the table key, you must be able to adjust the location of

fields on the screen. For example, if you wanted to create a new field above the surname

field, you would highlight the row and then click the ‘Insert row’ icon in the toolbar. This

toolbar also includes ‘Cut’, ‘Copy’ and ‘Paste’ options, allowing for rows to be moved up

and down if there is a need to do this:

Deleting Fields
While infrequent, occasionally there may be a need to remove a field from a table. When

doing this, it is important to take special care, as data can be lost in the process. Certainly

in the case of key fields.

If, for example, the Currency key field was removed from our table, the foreign key rela-

tionship to the TCURC table would be removed. As the SALARY field has to have a related

Currency Key this would cause the table to no longer continue working, and likely make

the ZEMPLOYEES2 table become inactive.

When deleting fields it is important to ask oneself whether the data being held in the table

is being used elsewhere, and whether its deletion will have further consequences. If you

do try to delete fields which are being used elsewhere, the SAP system should try to pre-

vent this, or at least issue a stern warning. This is not necessarily to be relied upon though,

so always ensure to check manually what the effects of deletion are likely to be. Also, if

131

ENHANCING DATABASE TABLES

you do delete fields, the table will have to be adjusted via the SE14 transaction to be acti-

vated again.

Create a new field, above ‘.INCLUDE’, named ‘ZAWESOME’. Use a previously created Data

element, here ZTITLE just to save time, and activate the table:

Create a new record in the table. The data here is not important and will be deleted, so

the content can be anything:

132

ENHANCING DATABASE TABLES

Now, to delete the field, highlight it in the ‘Maintain Table’ screen, and click the ‘Remove

row’ icon, in the toolbar next to ‘Insert row’. The row will disappear, but when you try to

activate the table, an error message will appear:

Transaction SE14 must again be used to adjust the table so the change can be applied. Fol-

low the same steps as in the previous section to perform this task. Once this is complete,

view the table again. The column has disappeared, and the data which was contained

within it lost:

To see what happens when a key field is deleted, return to the ABAP Dictionary initial

screen and make a copy of ZEMPLOYEES2, called, unsurprisingly, ZEMPLOYEES3. Doing this

will allow the ZEMPLOYEES2 table to not be damaged in this risky procedure. Activate the

new table (which, don’t forget, will be empty of records). As before, again make the Sur-

name field a key field. Now create some records for this table:

133

ENHANCING DATABASE TABLES

To save time creating new records, the same data was replicated here, with only slight

changes to the key fields. Remember that it is only one key field per entry which must be

unique for that particularly record to be unique itself.

Now, the surname field will be deleted, and the effects of deleting this key field observed.

By removing this key field, the only unique data which will be held for each record will be

the Employee Number and Client. Since SMITH and SMITH2, and ANDREWS and AN-

DREWS-2 have the same Employee Number and Client, these will no longer hold unique

key field data, leaving duplicate records, which the system will not allow.

Remove the Surname field; try to activate the table, and error messages will appear. Go

through SE14 to adjust the table for activation. When you now view the table, the Sur-

name field is gone, and two records have been lost, leaving only one of the two records

for each of the two Employee Numbers used:

Deleting Tables
One will not often have to delete an entire database table, for largely the same reasons as

were outlined above for fields. If this does have to be done it is important to remember

that one’s own customer-specific tables are the only ones which can be deleted, SAP de-

livered tables cannot be deleted. Because ZEMPLOYEES3 has only just been created, and

nothing else depends on this table, it can be deleted without consequences.

To check whether a table can be deleted without causing unintended consequences else-

where in the system, return to the ABAP Dictionary’s initial screen. Because the original

ZEMPLOYEES table was used in the programs which have been created, use this as a test.

Insert this into the Database table field on the screen and then click the ‘Where-used list’

icon from the toolbar.

134

ENHANCING DATABASE TABLES

Once this is clicked, a dialogue box will appear offering a list of check-boxes. This will then

search all of the different areas of the SAP system selected for references to the table

ZEMPLOYEES. To execute this search click the Continue icon. Choose ‘Yes’ to the pop-up

box, and wait while the system compiles the search results, which here show that this ta-

ble is being used currently by 2 programs:

Having done this, one now knows that if the ZEMPLOYEES table were to be deleted, these

programs would become inactive. By double-clicking these entries, one can see the code

in the program where ZEMPLOYEES is referred to, and if you double-click on any line of

the program, it will open the program at that line of code in the ABAP Editor. The Where-

used button is a very useful tool, which can be invaluable not just when deleting pro-

grams, but in many other scenarios.

If you were to try to delete ZEMPLOYEES, the system would not allow this course of action

and would prevent it from happening until all the programs that are dependent upon it

were either edited to remove references or deleted altogether themselves.

Since nothing depends upon ZEMPLOYEES3, this can be deleted. With the correct name in

the ‘Database table’ field, click the ‘Delete’ button in the toolbar:

135

ENHANCING DATABASE TABLES

A box appears stating that the data contained in the table would also be deleted. If you

click the green tick icon this time, the system would return to the main screen with the

table still intact. If the middle button, illustrated with the trashcan icon is clicked, this will

proceed with the deletion. Once this is done, the status bar should confirm the action. If

you try to display the table now, it does not exist. Once the deletion is completed, it can-

not be undone:

136

WORKING WITH OTHER DATA TYPES

Chapter 8 – Working with Other Data Types

Date and Time Fields
This section will look at some other data types which can be used in ABAP. So far, numeric

fields have been used for performing calculations, and character strings have been exam-

ined along with the ways these can be manipulated with ABAP statements. Now, date and

time fields will be looked at.

Enter the ABAP editor (with transaction SE38) and make a copy of the previous program,

alter the comment sections, and remove most of the code:

137

WORKING WITH OTHER DATA TYPES

Date and time fields are not stored as numeric data types, but instead as character data

types. Effectively, they are character strings which can be used in calculations. This is

made possible by the inbuilt automatic data type conversions which have previously been

discussed. Just like any other data type, the DATA statement is used to declare these

fields.

For a date field, the data type is referred to with ‘d’, and is limited to 8 characters. The

first 4 of these represent the year, the next 2 the month, and the final 2 the day. The

VALUE addition is used to specify this, and if it is not used then the value, by default, is

assigned as 8 zeros. In the example below, the date is the 1st of January, 2012:

138

WORKING WITH OTHER DATA TYPES

The LIKE statement, of course, can also be used. SY-DATUM is a system variable, which

always holds the value of the system’s date. Below, “my_date2” is defined in the same

way as this system variable:

Time fields work similarly, but this time are limited to 6 characters. The first 2 refer to the

hour, the second 2 the minute, and the final 2 the second. Again, the default value will be

6 zeros. The data type this time is ‘t’. Again, the LIKE statement can be used, here for the

system’s time field, referred to with SY-UZEIT:

We can then use the WRITE statement to output the field contents:

Note that in the first row the my_date field has reversed itself to the format DDMMYYYY.

In the second, no value was assigned to the field, so the system has output the default

zeros. However, as this was defined like the system’s date variable, it has included periods

in the formatting. This also applies to the my_time2 field, where colons have appeared

between the places where the time values would ordinarily be.

Date Fields in Calculations

139

WORKING WITH OTHER DATA TYPES

Some examples of performing calculations with date and time fields will now be looked at.

Using these fields in calculations is common practice within programming business sys-

tems, as one will often have to, for example, find the difference between two dates to de-

liver invoice dates, delivery dates and so on. Here, examples will be looked at so as to find

new dates, and find the difference between two dates.

Use the DATA statement to declare a start date for an employee, called “empl_sdate”, and

then give this a value of ‘20090515’. Then create another field called “todays_date” and

define the value of this as ‘sy-datum’, the system variable, which should then include the

date on that particular day:

Next, a calculation will be added, so as to work out this employee’s length of service. Cre-

ate a new variable named “LOS”, include a DATA statement giving “LOS” a data type ‘i’

and then define LOS as the calculation ‘todays_date – empl_sdate’. Then, add a WRITE

statement for this variable, which will include the employee’s length of service in the out-

put. Once this is complete, execute the code:

If one wants to add, for example, 20 days to today’s date, the same value is used for to-

days_date (the system variable, sy-datum). Create another variable, called “days_count”

with an integer value of 20, and another called “fut_date”. This variable’s value should

then be defined as ‘todays_date + days_count’, then ad a WRITE statement to output the

140

WORKING WITH OTHER DATA TYPES

fut_date. Don’t forget also to add the data types above (‘i’ for days_count and ‘d’ for

fut_date). The output should give the date 20 days on from today’s date, which here is the

7th of August, 2012:

Subfields can be used for date fields in exactly the same way as they were used before. In

the next example, a date field will be changed to represent the 20th day of the current

month. Copy the todays_date variable, then add a new line of code which changes the last

two figures of todays_date to the value ‘20’, and a WRITE statement. Also, output the sys-

tem date so as to compare the two:

In this next example, the last day of the previous month will be established. Use the to-

days_date variable again, this time using the subfield method above to change this to rep-

resent the first day of the current month. Then on a new line of code, subtract one from

this, so that the todays_date variable is now the final day of the previous month:

141

WORKING WITH OTHER DATA TYPES

Time Fields in Calculations
Calculations like those above can also be performed with time fields.

In the examples, employees’ clocking in and out times will be used. Use DATA statements

to declare the variables “clock_in” and “clock_out” as type ‘t’, along with others seen in

the image below, which will be used for calculations to work out the differences between

times in seconds, minutes and hours, all of an integer type:

Assign values to clock_in and clock_out of ‘073000’ and ‘160000’ respectively. Then, to

work out the difference between the two in seconds, use the calculation ‘clock_out -

clock_in’ and assign this value to “seconds_diff”. Then include some WRITE statements to

output this information:

To establish the difference in minutes, simply use the seconds_diff value, and divide this

by 60, and then to establish the hour’s difference, follow this by dividing minutes_diff by

60:

142

WORKING WITH OTHER DATA TYPES

Note that here, the 510 minutes do not, in fact, equal 9 hours exactly, the system has

rounded the number. This is because the hours_diff variable was declared as an integer. If

the data type for this is changed to a packed decimal, the value would have been estab-

lished as the more accurate 8.5 hours:

Quantity and Currency Fields in Calculations
Now, a look will be taken at using quantity and currency fields in calculations. In ABAP,

these are treated the same as packed number fields. Currency fields must be declared as

data type ‘p’, bearing in mind how many decimal places are required. This is important, as

having the right number of decimal places can have a large impact on the accuracy of cal-

culations.

Quite often in a program, one wants to create one’s own variables for quantity and cur-

rency fields. It is usually better, however, to associate these fields with the data types of

those in a table created in the ABAP dictionary. This is because the ABAP dictionary will

already have defined the correct field length and number of decimal places for these. For

example, the Salary field in the table created previously had defined two decimal places. If

a currency field in a program is declared to match this field but the data type in the pro-

gram is set manually to 2 decimal places and the number of decimal places in the table

was to change, the program would no longer operate properly here. For this reason, it is

usually preferable to use the LIKE statement for these fields.

In this example a new variable named “my_salary” has been declared using the LIKE

statement:

Because this field in the program is linked to the field in the table, the system will ensure

these data types are kept in sync. There are two aspects to this process, the number of

143

WORKING WITH OTHER DATA TYPES

decimal places, and the associated currency (or quantity) keys. If you look at the CURR

data type in the ABAP dictionary, you will see that this is stored as a decimal - 9 characters

and 2 decimal places. You can also see that its internal format is ABAP type p, packed

decimal:

Additionally, don’t forget that the salary field and its currency data type always refer to

the currency key field, in the table called ECURRENCY. Ultimately, then, when one is de-

claring fields in ABAP, it is important to reference these to the associated fields in a table,

and when working with currencies, the currency key field will always be there and should

be taken into account. The same applies to quantity fields. The only difference is their data

type is QUAN, and rather than a currency key, will always have a UNIT associated with

them.

Now, using calculations from the currency field, an employee’s tax and net pay amounts

will be established, so declare two more DATA statements for these fields, again referenc-

ing the salary field in the table. Also add a tax percentage variable, of type p with 2 deci-

mals:

Add a TABLES statement so that the program knows to refer to the ZEMPLOYEES2 table,

then observe the calculations in the code below:

144

WORKING WITH OTHER DATA TYPES

First, the tax percentage is established. This is in this example 20%, so for the means of the

calculations is written as 0.20. Then the code will select records from the ZEMPLOYEES2

table, and write the surnames, salaries and currencies for these. Next, the tax amount is

established, by multiplying the tax percentage by the salary. Net pay is equal to the salary,

minus the tax amount. Then add a WRITE statement to output the results the end of the

SELECT loop. The output should look like this (where salaries and currencies are not pre-

sent in the table, go back and edit the records in your table to put some values):

The surname, salary and currency for each record are written on the first line, followed by

the tax amount and net pay on the following line. To make this look tidier, descriptive text

can be added to the WRITE statements in the code:

145

WORKING WITH OTHER DATA TYPES

146

MODIFYING DATA IN DATABASE TABLES

Chapter 9 – Modifying Data in a Database Table

Authorisations
When writing programs using open SQL, one has to bear in mind the concepts of authori-

sation in an SAP system. An SAP system has its own security tools to ensure that users can

only access data which they are authorised to see. This includes individual fields as well as

individual records. The way authorisations are set up can also limit how data is used,

whether a user can only display data or whether they can modify it. All the rules pertain-

ing to this are stored as authorisation objects. These will not be examined in great detail

here, but ordinarily users are assigned their own authorisation profile (or composite pro-

file) against their user record, which for informational purposes is managed through

transaction code SU01.

This profile then gives the user the correct rights within the program to then carry out

their job and SAP delivers many predetermined user profiles with the base system. The

system administrators can then use and enhance these to be applied to users. Once a user

has one of these profiles, the system will tell them whether or not they can execute a

transaction when they try to do this. For example, transaction SE38, the ABAP editor,

could be tweaked so that while some users may be able to access it, perhaps they can only

do so in display mode, or perhaps they can display and debug the code, but not change it

themselves.

Where specific authorisations have not been implemented, programs can be made to

carry out an authority check, using the statement AUTHORITY-CHECK. This must be used if

a program or transaction is not sufficiently protected by the standard authorisation pro-

files already set up in the system.

While, this will not be examined in great detail here (the topic is huge in itself), it is impor-

tant to bear authorisations in mind when working in SAP.

Fundamentals
So far, reading data from database tables has been looked at, now modifying and deleting

this data will be examined. There are some important concepts to keep in mind here, for

147

MODIFYING DATA IN DATABASE TABLES

example, the architecture of the system. If one has a three-tier architecture (with a pres-

entation layer, an application server and an underlying database), you must bear in mind

that there may be a very large number of users accessing the data at any one time. It is

important to ensure that programs created do not cause any problems in the rest of the

system and that the most recent version of the data held on the database is accessed

when a program runs. If records are constantly being updated, programs must be able to

read and work with data which is current in the system. Fortunately, most of this work is

done automatically by the SAP system, and one doesn’t have to worry too much about the

underlying technologies related to how data is locked and so on.

One of the key tools which can be used is Open SQL. This acts as an interface between the

programs created and the database. By using Open SQL, one can read and modify data,

and also buffer data on the application server, which reduces the number of database ac-

cesses the system has to perform. It is the database interface which is also responsible for

synchronising the buffers with the database tables at predetermined intervals.

When one is creating programs it is important to keep in mind that if data is buffered, and

this buffered data is subsequently read, it may not always be up to date. So, when tables

are created, they must be created in such a way that the system is told that buffering can

or cannot be used, or that it can only be used in certain situations. When the example ta-

bles were created earlier, the system was told not to use buffering. Using this setting

means that every time data is read from a table, it will always use the most up to date re-

cords.

Buffering can be useful for tables which hold master data and configuration settings, be-

cause this kind of data does not get updated regularly. When one is working with transac-

tional data however, one wants this data to be as up to date as possible. If transactional

data is being used in a context where tables are using buffering, it is important to ensure

that programs related to this can take this into account, and make sure that the buffer is

updated with new data when this is needed.

When one uses Open SQL statements in a program, tables can only be accessed through

the ABAP dictionary. This acts as an interface, one does not access the tables directly

through programs. This is not a problem however, as when one uses Open SQL state-

ments, it works just the same as if one was accessing the database directly. Open SQL

manages its interface with the database by itself, without the need for the user to do any-

148

MODIFYING DATA IN DATABASE TABLES

thing here. Statements can be coded just as though they had direct access to the tables,

though with the underlying knowledge that by using Open SQL, the data is in fact being

accessed through the ABAP dictionary with a built-in level of safety to ensure the ABAP

code does not have a direct effect on the SAP database system itself.

Database Lock Objects
Now, locking concepts will be considered. This refers to locking data in database tables

and there are two basic types of locking which must be kept in mind. First of all, database

locks. These lock data in a physical database. When a record is updated, a lock is set on

this, then when it is updated the lock is released. It is there to ensure that, once set, the

data can only be accessed and updated by those authorised to do so. When released, it

can be accessed more widely.

These locks, though, are not sufficient in an SAP system, and are generally only used when

a record is being modified in a single step dialogue process. This process refers to any time

that the data in a database can be updated in a single step, on a single screen. In this case,

the data can be locked, updated and released very quickly.

As you work more with SAP, the insufficiency of database locks will become clearer, be-

cause transactions in an SAP system often occur over multiple steps. If, for example, an

employee record is added to the system, one may have to fill in many screens of data. The

user in this case will only want the record to be added to the system at the end of the last

screen, once all of the data in all of the screens has been input. If just the first screen’s

data was saved into the database, then the second’s, and so on, one by one, if the user

were to quit halfway through the process, an invalid and unfinished record would be in

the database.

This demonstrates the hazard of using database locks with multi-step dialogue processes.

For these instances, SAP has introduced a new kind of lock, independent of the database

system. These are called lock objects, and allow data records to be locked in multiple da-

tabase tables for the whole duration of the SAP transaction, provided that these are linked

in the ABAP dictionary by foreign key relationships.

SAP lock objects form the basis of the lock concept, and are fully independent of database

locks. A lock object allows one to lock a record for multiple tables for the entire duration

of an SAP transaction. For this to work, the tables must be linked together using foreign

149

MODIFYING DATA IN DATABASE TABLES

keys. The ABAP dictionary is used to create lock objects, which contain the tables and key

fields which make up a shared lock.

When the lock object is created, the system automatically creates two function modules,

which will be discussed later. These function modules are simply modularised ABAP pro-

grams that can be called from other programs. The first of these has the action of setting a

lock, and the second releases this lock. It is the programmer’s responsibility to ensure that

these function modules are called at the correct place in the program. When a lock is set,

a lock record is created in the central lock table for the entire SAP system. All programs

must adhere to using the SAP lock concept to ensure that they set, delete and query the

lock table that stores the lock records for the relevant entries.

Lock objects will not be discussed much further, however subsequent programs created,

tables accessed and so on here will be done on the assumption that they are not to be

used outside of one’s own system.

Using Open SQL Statements
Now, some of the Open SQL statements which can be used in programs will be looked at.

As mentioned before, Open SQL statements allow one to indirectly access and modify

data held in the underlying database tables. The SELECT statement, which has been used

several times previously, is very similar to the standard SQL SELECT statement used by

many other programming languages. With Open SQL, these kinds of statements can be

used in ABAP programs regardless of what the underlying database is. The system could

be running, for example, an Oracle database, a Microsoft SQL database, or any other, and

by using Open SQL in programs in conjunction with the ABAP dictionary to create and

modify database tables, one can be certain that the ABAP code will not have any issues

accessing the data held by the specific type of database the SAP system uses.

When the first database table was created previously, the field MANDT was used, repre-

senting the client number and forming part of the database table key, highlighted below:

150

MODIFYING DATA IN DATABASE TABLES

One may think that, given the importance of this field, it would have to be used in ABAP

programs when using Open SQL statements, however, it does not. Almost all tables will

include this ‘hidden’ field within them, and the SAP system is built in such a way that a

filter is automatically applied to this field, based on the client ID being used. If one is

logged in, for example, to client 100, the system will automatically filter all records in the

database on this client key and only return those for client 100. When Open SQL is used in

the programs one creates, the system manages this field itself, meaning it never has to be

included in any selections or update statements used in programs. Also, this carries the

benefit of security in the knowledge that any Open SQL statement executed in a program

will only affect the records held in the current client.

Using Open SQL Statements – 5 Statements
There are 5 basic Open SQL statements which will be used regularly in programs from here

forward. These are SELECT, INSERT, UPDATE, MODIFY and DELETE.

 The SELECT statement has, of course, already been used. This statement allows

one to select records from database tables which will then be used in a program.

 INSERT allows new records to be inserted into a database table.

 UPDATE allows records which already exist in the table to be modified.

 MODIFY performs a similar task to update, with slight differences which we will

discuss shortly.

 DELETE, of course, allows records to be deleted from a table.

Whenever any of these statements are used in an ABAP program, it is important to check

whether the action executed has been successful. If one tries to insert a record into a da-

tabase table, and it is not inserted correctly or at all, it is important to know, so that the

appropriate action can be taken in the program. This is done using a system field which

has already been used: SY-SUBRC. When a statement is executed successfully, the SY-

SUBRC field will contain a value of 0, so this can be checked for and, if it appears, one can

continue with the program. If it is not successful, however, this field will contain a differ-

ent value, and depending on the statement, this value can have different meanings. It is

therefore important to know what the different return codes are for the different ABAP

statements, so as to recognise problems and take the correct course of action to solve

them. This may sound difficult, but with practice will become second-nature.

151

MODIFYING DATA IN DATABASE TABLES

Insert Statement
The SELECT statement has already been used, so here it will be skipped for now to focus

on the INSERT statement. In this example then, a new record will be inserted into the

ZEMPLOYEES table. Firstly, type INSERT, followed by the table name, and then a period:

Doing this, one must always type the table name, a variable’s name cannot be used in-

stead. Use the check statement (IF) to include an SY-SUBRC check, telling the system to do

if this does not equal 0:

This is the simplest form of the INSERT statement, and not necessarily the one which is

encouraged. Using this form is no longer standard practice, though one may come across

it if working with older ABAP programs.

In the above statement, nothing is specified to be inserted. This is where the concept of

the work area enters. The statement here expects a work area to exist which has been

created when an internal table was declared. This type of work area is often referred to as

a header record:

The table above shows the yellow area as a standard table containing four records and

their respective fields, the area above in grey is the header record, which is stored in

memory and is the area which is accessed when the table is referenced from a program

only by its table name. If an INSERT statement is executed, whatever is contained in the

header record will be inserted into the table itself. The header record does not exist in the

152

MODIFYING DATA IN DATABASE TABLES

table, it is just an area stored in memory where a current record can be worked with,

hence the term work area. When someone refers to the table only by its table name, it is

the header record which is referred to, and this can become confusing. One thinks that

one is referencing the table itself, but in fact it is the header record which is being worked

with, a record held in memory with the same structure as the table. ABAP objects, which

are important when one gets to a more advanced stage in ABAP, will not allow a header

record to be referred to, so it is important not to do this. Header records were used com-

monly for this in the past, but as noted previously, this is no longer the way things are

done.

To avoid confusion when working with internal tables should programs must work with

separate work areas, which are perhaps similar in structure to a header record, but not

attached to the table, with a separate name. These are separate structures from the initial

table, which are created in a program.

To declare a work area the DATA statement is used. Give this the name “wa_employees”.

Now, rather than declaring one data type for this, several fields which make up the table

will be declared. The easiest way to do this is to use the LIKE statement.

So here, the wa_employees work area is declared LIKE the zemployees table, taking on the

same structure without becoming a table itself. This work area will only store one record.

Once this is declared, the INSERT statement can be used to insert the work area and the

record it holds into the table. The code here will read “INSERT zemployees FROM

wa_employees”:

153

MODIFYING DATA IN DATABASE TABLES

Additionally, using this form of the INSERT statement allows you to specify the table name

using a variable instead. It is important to note here that if one is doing this, the variable

must be surrounded by brackets.

Now, the work area must be filled with some data. Use the field names from the

zemployees table. This can be done by forward navigation, double-clicking the table name

in the code, or by opening a new session and using SE11. The fields of the table can then

be copy & pasted into the ABAP editor and the work area’s fields populated as in the

image below:

The check statement can then be formulated as follows, meaning that if the record is in-

serted correctly, the system will state this, if not then the SY-SUBRC code which will not

equal zero is will be displayed:

Check the program, save, and activate the code, then test it. The output window will dis-

play:

If you check the records in your table via the ‘Data Browser’ screen in the ABAP dictionary,

a new record will be visible:

154

MODIFYING DATA IN DATABASE TABLES

For practice use the ABAP debugger to execute the code step-by-step. First, delete the

record from the table in the ABAP dictionary and put a breakpoint in the code at the be-

ginning of the record entry to the work area:

Now execute the program. The breakpoint will cause program execution to pause at your

breakpoint and the debugger will open:

Firstly, use the Fields mode to view the work area structure. Double click the

wa_employees after the DATA statement and it will appear in the ‘Field names’ box at the

bottom. At this point the work area is completely empty, evidenced by the zeros in the

adjacent box. To display the full structure, double click the wa_employees in the left box:

155

MODIFYING DATA IN DATABASE TABLES

Then, execute each line of code starting from the breakpoint using the F5 key, the fields

within this structure view are filled one by one:

Return to the Fields view before executing the INSERT statement, and observe the SY-

SUBRC field at the bottom of the window. It displays a value of 0. If there are any prob-

lems in the execution, this will then change (4 for a warning, 8 for an error). Given that

this code has already been successful, you already know that it will remain 0. Once the

program has been executed in the debugger, refresh the table in the Data Browser screen

again, and the record will be visible.

Clear Statement
At this point, the CLEAR statement will be introduced. In ABAP programs, one will not al-

ways simply see the program start at the top, insert one data record and continue on.

156

MODIFYING DATA IN DATABASE TABLES

Loops and the like will be set up, allowing, for example, many records to be inserted at

once. To do this, variables and structures are re-used repeatedly. The CLEAR statement

allows a field or variable to be cleared out for the insertion of new data in its place, allow-

ing it to be re-used. The CLEAR statement is certainly one which is used commonly in pro-

grams, as it allows existing fields to be used multiple times.

In the previous example, the work area structure was filled with data to create a new re-

cord to be inserted into the zemployees table, then a validation check performed. If one

then wants to insert a new record, the work area code can then be copy & pasted below

this. However, since the work area structure is already full, the CLEAR statement must be

used so that it can then be filled again with the new data.

To do this, the new line of code would read “CLEAR wa_employees.”

If you just wanted to clear specific fields within your structure you just need to specify the

individual fields to be cleared, as in the example below, clear the employee number field.

New data can then be entered into the work area again:

Remember that the employee number is a key field for the zemployees table, so as long as

this is unique, duplicate information could be entered into the other fields. If one tries to

enter the same employee number again though, the sy-subrc field will display a warning

with the number 4.

You can see the operation of the CLEAR statement in debug mode. The three images be-

low display the three stages of its operation on the field contents as the code is executed:

157

MODIFYING DATA IN DATABASE TABLES

Update Statement
The UPDATE statement allows one or more existing records in a table to be modified at

the same time. In this example it will just be applied to one, but for more the same princi-

ples generally apply.

Just as with the INSERT statement, a work area is declared, filled with the new data which

is then put into the record as the program is executed.

Delete the record created with the CLEAR statement as before. Here, the record previ-

ously created with the INSERT statement will be updated. Copy & paste the work area and

then alter, the text stored in the SURNAME and FORENAME fields. Then on a new line, the

same structure as for the INSERT statement is used, but this time using UPDATE:

158

MODIFYING DATA IN DATABASE TABLES

As this is run line-by-line in debug mode, you can see the Field contents change as it is

executed:

Once the UPDATE statement has been executed you can view the Data Browser in the

ABAP Dictionary to see that the record has been changed successfully:

Modify Statement
The MODIFY statement could be said to be like a combination of the INSERT and UPDATE

statements. It can be used to either insert a new record or modify an existing one. Gener-

ally, though the INSERT and UPDATE statements are more widely used for these purposes,

since these offer greater clarity. Using the MODIFY statement regularly for these purposes

is generally considered bad practice. However, times will arise where its use is appropri-

ate, for example of one is writing code where a record must be inserted or updated de-

pending on a certain situation.

159

MODIFYING DATA IN DATABASE TABLES

Unsurprisingly, the MODIFY statement follows similar syntax to the previous two state-

ments, modifying the record from the data entered into a work area. When this statement

is executed, the key fields involved will be checked against those in the table. If a record

with these key field values already exists, it will be updated, if not then a new record will

be created.

In the first section of code in the image below, since employee number is the key field,

and ‘10000006’ already exists, the record for that employee number will be updated with

the new name in the code. A validation check is performed next. The CLEAR statement is

then used so a new entry can be put into the work area, and then employee 10000007 is

added. Since this is a new, unique key field value, a new record will be inserted, and an-

other validation check executed:

160

MODIFYING DATA IN DATABASE TABLES

When this is executed, and the data then viewed in the Data Browser, employee number

10000006 will have been updated with the new name, Peter Northmore, and a new re-

cord will have been created for number 10000007, Susan Southmore:

Delete Statement
The last statement to be looked at in this section is the DELETE statement. One must be

careful using this, because if used incorrectly, there is the possibility of wiping the entire

contents of the table, however, as long as it is used correctly, there should be no problem

of this sort.

Unlike the previous SQL statements, the DELETE statement does not take into account

most fields, only the primary key field. When you want to delete a record from a table, the

system only needs to be told what the primary key field value for that record is.

In this example, the last record created, for the employee Susan Southmore will be de-

leted. For the zemployees table, there are two key fields, the client field and the employee

number. The client field is dealt with automatically by the system, and this never has to be

included in programs, so the important field here is the employee number field. The syn-

tax to delete the last record created in the previous section would be this:

The FROM addition in the last line ensures only the record referred to by its key field in

the work area will be deleted. Again, a validation check is performed to ensure the record

is deleted successfully. When this is run in debug mode you can see the fields which are

filled with the creation of the record are cleared as the CLEAR statement executes.

After the employee number is filled again the DELETE statement is executed. The code’s

output window will indicate the success of the deletion and the record will no longer ap-

pear in the Browser view of the table:

161

MODIFYING DATA IN DATABASE TABLES

162

MODIFYING DATA IN DATABASE TABLES

The record is now gone from the table.

There is another form of the DELETE statement which can be used. You are not just re-

stricted to using the table key to delete records, logic can also be used. So, rather than

using the work area to specify a key field, and using the FROM addition to the DELETE

statement, one can use the WHERE addition to tell the program to delete all records

where a certain field matches a certain value, meaning that if one has several records

which match this value, all of them will be deleted.

The next example will demonstrate this. All records with the surname Brown will be de-

leted. To be able to demonstrate this, create a second record containing a surname of

Brown, save this and view the data:

The code for the new DELETE statement should then look like this. Note the additional

FROM which must be used in this instance:

163

MODIFYING DATA IN DATABASE TABLES

When this code is executed, both records containing a Surname of Brown will be deleted.

Note that, if one uses the following piece of code, without specifying the logic addition, all

of the records will in fact be deleted:

164

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Chapter 10 – Program Flow Control and Logical

Expressions

Control Structures
This section will look at program flow control and logical expressions. It could be argued

that this is really the main aspect of ABAP programming, where the real work is done.

How one structures a program using logical expressions will determine the complete flow

of the program and in what sequence actions are taken.

First, a look will be taken at control structures. When a program is created it is broken up

into many tasks and subtasks. One controls how and when the sections of a program are

executed using logical expressions and conditional loops, often referred to as control

structures.

If Statement
Copy you program previous chapter in which to test some of the logic which is to be built.

Here I copy the program Z_OPENSQL_1 to Z_LOGIC_1:

Remove all of the code from the program, leaving only the first example INSERT statement

and its validation test.

When one talks of control structures, this refers to large amounts of code which allows

one to make decisions, resulting in a number of different outcomes based on the decisions

taken. Take a look at the IF statement to explain the basic logic at work here.

165

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The IF statement is probably the most common control structure, found in just about

every programming language. The syntax may vary between languages, but its use is just

about universal:

This IF statement tells the program that IF (a logical expression), do something. The ELSE

addition means that should this logical expression not occur, do something else. Then the

statement is ended with the ENDIF statement.

The IF and ENDIF statements belong together, and every control structure created will

take a similar form, with a start and an end. Control structures can be very large, and may

contain other, smaller control structures within them, having the system perform tasks

within the framework of a larger task. The code between the start and end of a control

structure defines the subtasks within it. Tasks can be repeated, in what are called loops.

From here on, control structures will be used to control the flow, create tasks, subtasks

and branches within a program, and to perform loops.

Comment out all of the preceding code, and click the ‘Pattern’ button, in the toolbar by

Pretty Printer. A window will appear, and just select the ‘Other pattern’ field, and type

“IF”. The structure of an IF statement will then appear in the code, which can be followed

as a guide:

166

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Create a DATA statement, 15 characters of type ‘c’, and name this “surname”. Then on a

new line give this the value ‘SMITH’. Then edit the auto-generated IF statement so that it

looks like this.

167

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The IF statement here takes the form that if the value of ”surname” is ‘SMITH’, text will be

displayed stating “Youve won a car!” (note that an apostrophe cannot be placed correctly

in You’ve without making the code invalid). Then execute the code. The result should be:

Next, this will be extended to include the ELSEIF statement which has been commented

out above. Change the value of “surname” to ‘BROWN’. Then, add to the ELSEIF statement

so that if the value of “surname” is ‘BROWN’, the output text will read “Youve won a

boat!”:

In this example, the first IF statement was not true, as the surname was not Smith. Hence

this branch was not executed. The ELSEIF statement was true, so the text output assigned

168

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

here appeared. The ELSEIF statement can be added to an IF statement any number of

times, to designate the action taken in a number of situations:

Depending on what the value of ‘surname’ is at any given time, a different branch will be

executed.

There is also the ELSE statement. This is used for the last piece of the IF block, and is used

if none of the values in the IF and ELSEIF statement are matched. The full block of code is

shown below:

With this block as it is now, there will always be an output, regardless of the value of ‘sur-

name’, every possibility is now taken care of. The value will either match one of the first

four, or the ELSE statement’s text will be displayed. The IF statement is very important for

determining the flow of a program and will be used on a regular basis.

169

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Linking Logical Expressions Together
There are a whole set of ABAP operators which can be used with logic statements. With

the IF statement so far the equals (=) operator has been used. The following can also be

used here:

(from left to right: equal to, NOT equal to, less than, greater than, less than OR equal to,

greater than OR equal to. These can also be written with their text equivalents, in order:

EQ, NE, LT, GT, LE, GE. The text versions are not commonly used.)

Logical expressions can be linked with the operators OR, AND and NOT. For example, one

could add to the previous IF statement:

OR and NOT operate can also be used in exactly the same way

Nested If Statements
Nested IF statements allow one to include IF statements inside other IF statements, for

example:

Here, the first IF statement will discount records where the Surname field value does not

equal ‘SMITH’. For all records with a Surname = ‘SMITH’, the second IF statement checks

to see if the record being processed has a Forename = ‘JOHN’. If it does the message

“Youve won a car!” will be output to the screen. If not, a consolatory message will be out-

put instead.

170

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

You are not limited to just one nested IF statement. Nesting can continue down as many

levels / branches as is required by the program being written, for example:

Also, you do not simply have to nest statements one after another, but can put any other

statements you need between, as long as the control structures are terminated correctly

with, in this case, the ENDIF statement.

Case Statement
When logical expressions are created, and linked together, it is always important to make

the code as readable as possible. Generating many logical expressions on one line can of-

ten be confusing. While the code will still work without problems, it is preferable to struc-

ture your code across multiple lines and make use of other control structures if possible.

This is where the CASE statement can help. This does similar work to the IF statement but

with the flexibility to make the code much more readable, but is at the same time limited

to one logical expression. Here is an example code block for the CASE statement:

Like the IF statement, here the contents of the surname field are searched by the CASE

statement, checking its contents and performing an action. The WHEN addition is used to

check the field for different values, and WHEN OTHERS accounts for all values which are

171

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

not specified elsewhere. The ENDCASE statement closes this control structure. This is in

many ways much easier to read than a large amount of nested IFs and ELSEIFs.

You also have the facility to nest multiple CASE statements.

Select Loops
This next section will discuss iteration statements, otherwise known as looping state-

ments. These are used to execute a block of ABAP code multiple times.

Create another new program and call it Z_ITERATIONS_1.

There are various ways to loop through blocks of code in an ABAP program, and these can

be separated into those which have conditions attached and those which do not. The

SELECT statement is a form of loop which has already been used. This statement allows

you to iterate through a record set.

The asterisk (*) tells the program to select everything from the zemployees table, and this

is followed by a WRITE statement to write the table to the output screen. The SELECT loop

172

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

closed with ENDSELECT, at which point the loop returns to the start, writing each record in

turn until there are no more records to process in the table.

This last example had no conditions attached. To add a condition is quite simple:

Here, only records where the surname is Mills will be selected and written to the output

screen:

Do Loops
The DO loop is a simple statement, here declare DO. Add a WRITE statement, and then

ENDDO:

You will notice there is nothing to tell the loop to end. If one tries to execute the code, the

program will get stuck in a continuous loop endlessly writing out ‘Hello’ to the output

screen. The transaction must be stopped and the code amended. A mechanism must be

added to the DO loop to tell it when to stop processing the code inside it. Here, the TIMES

addition is used. Amend the code as follows so that the system knows the loop is to be

processed 15 times. Also here a ‘new line’ has been added before ‘Hello’:

173

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The DO statement is useful for repeating a particular task a specific number of times. Just

remember to always include the TIMES addition.

Now try some processing with the DO loop. Create a DATA variable named ‘a’, of type in-

teger, and set the value of this to 0. Then, inside the DO loop, include the simple calcula-

tion “a = a + 1”.

The system also contains its own internal counter for how many times a DO loop is exe-

cuted, which can be seen when this is executed in debug mode. Set a breakpoint on the

DO line, then execute the code, keeping an eye on the ‘a’ field in the Field names section,

and also includes ‘sy-index’ in one of these fields. You will see that ‘a’ keeps a running

count of how many times the DO loop executes as well as the system variable sy-index.

The values will be the same for both, going up by 1 each time the loop completes. The sy-

index variable will in fact update a line of code before the ‘a’ variable, as it counts the DO

loops, and the ‘a’ refers to the calculation on the next line of code:

174

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Note that here the blue arrow cursor has moved down a line in the second image, execut-

ing the next line of code. If one adds a new line to the WRITE statement in the initial code,

the output window will appear like this:

175

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Nested Do Loops
DO loops can also be nested. If this is done, each nested loop will have its own sy-index

created and monitored by the system. Be aware that when nesting many loops, it is im-

portant to consider how much work the system is being asked to do.

Add to the WRITE statement from the previous section a small amount of text reading

‘Outer Loop cycle:’ before outputting the value of ‘a’. This will allow ‘a’ to be monitored.

Then, under the WRITE statement, add a new DO statement to create the inner loop cycle,

as below, as well as adding the extra data variables. The main loop will execute 15 times,

but within each of these loops, the nested loop will execute 10 times. The variable named

‘c’ will count how many times the loop has occurred. Around 150 loops will execute here.

While the SAP system will certainly be able to handle this instantly, you should bear in

mind that if this number was significantly larger and included more intensive processing

than simple counting, this could take much longer:

176

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Set a breakpoint and execute this code in debug mode, keeping an eye on the values of a,

b, c and sy-index in the Fields mode. As the DO loop is entered, the sy-index field will be-

gin counting. Here, the inner loop has just occurred for the 10th time, noted by the 10 in

sy-index (and indeed the value of ‘b’).

177

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Then the full loop has completed once, the sy-index field displays 1 and the ‘c’ field has

been filled in:

After the second full loop, sy-index and ‘a’ will display 2, ‘b’ will be 10 again (as its value is

reset to 0 at the beginning of each loop) and ‘c’ will display 20 representing the number of

calculations completed all together:

After the full 15 outer loops are completed, it will look like this:

178

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The value of ‘a’ is then added to ‘c’ to give the total number of both outer and inner loops

completed:

When the results are viewed in the output window, the last full loop will look like this:

While Loops
The next looping statement to be examined is the WHILE loop. This differs from the DO

loop in that it checks for a predefined condition within the loop before executing any

code. All the code between the WHILE and ENDWHILE statements will be repeated as long

as the conditions are met. As soon as the condition is false the loop terminates. Here,

again the sy-index field can be monitored to see how many times the loop has executed.

179

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

So here, the loop will again cause the value of ‘a’ to take the form of incremental count-

ing, and each time the loop is executed the value of ‘a’ will be written. The loop will con-

tinue as long as the value of ‘a’ is not equal to 15, and once it is, it will stop:

If one runs this in the debugger mode one will see that on the 15th loop, when the value of

‘a’ is 15, the code inside the statement is skipped over and the cursor jumps straight from

WHILE to ENDWHILE.

Nested While Loops
Just as with DO loops, WHILE loops can be nested. The process is exactly the same for

both. Below is an example of nested WHILE loop statements.

The output for this code would appear exactly the same as our nested DO loop example.

The values of ‘b’ have also been indented slightly here for ease of reading:

180

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Loop Termination – CONTINUE
Up until now, the loop statements set up have been allowed to use the conditions inside

them to determine when they are terminated. ABAP also includes termination statements

which allow loops to be ended prematurely. There are two categories of these, those

which apply to the loop and those which apply to the entire processing block in which the

loop occurs.

First, we will looks at how to terminate the processing of a loop. The first statement of

importance here is the CONTINUE statement. This allows a loop pass to be terminated

unconditionally. As the syntax shows, there are no conditions attached to the statement

itself. It tells the program to end processing of the statements in the loop at the point

where it appears and go back to the beginning of the loop again. If it is included within a

loop, any statements after it will not be executed.

For the simple DO loop ,include an IF statement which includes CONTINUE inside it, like

this:

181

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

With this code, the second iteration of the loop (when the sy-index field, like the value of

a, will read 2) will hit the CONTINUE statement and go back to the top, missing the WRITE

statement. When this is output, the incremental counting will go from 1 to 3. As with

many of these statements, in debug mode, the operation can be observed more closely by

executing the code line by line.

Loop Termination – CHECK
The CHECK statement works similarly to the CONTINUE statement, but this time allows

you to check specific conditions. When the logic of a CHECK statement is defined, if the

condition is not met, any remaining statements in the block will not be executed and

processing will return to the top of the loop. It can be thought of as a combination of the

IF and CONTINUE statements. To use the CHECK statement to achieve the same ends as in

the example above, the syntax would look like this:

The program will check that the sy-index field does not contain a value equal to 2, and

where it does not, will continue executing the code. When it does contain 2, the condition

attached will not be true and the CHECK statement will cause the loop to start again, miss-

ing the WRITE statement. This can be executed in debug mode to closely observe how it

works. The output window, once this is complete, will again appear like this:

182

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

When you are looking at programs created by other people, do not be surprised to see the

CHECK statement used outside loops. It is not only used to terminate a loop pass, but can

check, and terminate other processing blocks at any point if its particular conditions are

not met. You must be aware of where the CHECK statement is being used, as putting it in

the wrong place can even cause the entire program to terminate. For example here, the

statement will only allow processing to continue if the value of ‘a’ is equal to 1. Since the

value of ‘a’ equals 0, it will always terminate the program before the DO loop is reached:

Loop Termination – EXIT
The EXIT statement can also be used to terminate loops. This again allows the loop to be

terminated immediately without conditions. Unlike the CONTINUE statement though, it

does not then return to the beginning of a loop but, terminates the loop entirely once it is

reached. The program will then continue process the code immediately following the end

statement of the loop.

183

PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

If the exit statement is used within a nested loop, it will only be that nested loop which is

terminated and the statement following the end of the nested loop will execute next in

the higher level loop. Additionally it can, like the CHECK statement, be used outside loops,

though again one must be careful doing this.

In the next example, regardless of the number of times the DO statement is told to be

executed, on the third loop when the sy-index field contains the number 3, the loop will

be terminated and the statement after ENDDO will be executed, writing “Filler” to the

output screen.

184

SELECTION SCREENS

Chapter 11 – Selection Screens

Events
For selection screens to be built and used in a program, the first things to understand are

events. Events are processing blocks, sections of code specific to the selection screens.

The structure of an event starts with the event keyword, but does not have an ending

keyword. The end of the event block of code is implicit, because the beginning of the next

event will terminate the first, or the code itself will end.

When executable programs are run, they are controlled by a predefined process in the

runtime environment, and a series of processes are called one after another. These proc-

esses trigger events, for which event blocks can be defined within the program. When a

program starts, certain events work in a certain order.

At the top level is the SAP Presentation Server (Usually the SAP GUI), seen by the end user,

with its selection screen and list output. When a program starts, from the left, with the

declaration of global variables, the system will check to see if any processing blocks are

included and will follow the sequence of events detailed above to execute these.

185

SELECTION SCREENS

The initialization event block of code will only be run once, and will include things like the

setting up of initial values for fields in the selection screen. It will then check whether a

selection screen is included in the program. If at least one input field is present, control

will be passed to the selection screen processor.

This will display the screen to the user, and it can then be interacted with. Once this is

complete, the ‘at selection screen’ event block will process the information, and this is

where one can write code to check the entries which have been made. If incorrect values

have been entered, the code can catch these and can force the selection screen to be dis-

played again until correct values are entered. Error messages can be included so that the

user then knows where corrections must be made.

The ‘start of selection’ event block then takes control once the selection screen is filled

correctly. This can contain code for, for example, setting up the values of internal tables or

fields. There are other event blocks, which are visible in the diagram and there could be a

number of others. The ones discussed here though, tend to be the main ones which would

be used when working with selection screens to capture user input, which will then be

used to process the rest of the program.

Once all of these event blocks have been processed, control is handed to the list proces-

sor, which will output the report to the screen for the user to see. The list screen occa-

sionally can be interactive itself, and the code in the event block ‘at line selection’ visible

in the diagram takes responsibility for this.

This chapter will focus on creating the selection screen and making sure the user enters

the correct values for the report, as well as ensuring the selection screen has a good inter-

face.

Intro to Selection Screens
ABAP reports have 2 types of screens, selection screens and list output screens. The out-

put window has already been used to produce list output screens. Selection screens are

very commonly used. Indeed, when entering the ABAP editor, you are using a type of se-

lection screen:

186

SELECTION SCREENS

We will focus on reproduced this type of screen for use by our programs. These will allow

the user to select data which will be used as parameters in the program. When one cre-

ates a selection screen, in fact a dialogue screen is being created, but one does not have

to write the dynpro code oneself. Only specific statements need to be used, and the sys-

tem will take care of the screen flow logic itself.

List screens and selection screens are both dialogue programs. Every one of these has at

least one dynpro which is held in what is called a module pool. A dynpro report program

called ‘standard selection screen’ is called and controlled automatically by the runtime

environment while the program is executed. The dynpro number itself is 1000. The user

will only see the screen when the programmer includes the parameters in their program

using specific ABAP statements. It is these ABAP statements which cause the screen to be

generated and displayed to the user. This means it is easy for the programmer to start

writing their own programs without having to think about code to control the screen.

Creating Selection Screens
Create a brand new program in the ABAP editor, called Z_SCREENS_1.

First, the initialization event will be looked at. This is the first thing to be triggered in a

program. In this example, imagine one wanted to know the last employee number which

was used to create a record in the zemployees table. The initialization event is the correct

place for this type of code, so that this information can then be displayed on the selection

screen, alerting the user that values greater than this should not be entered as they will

not return results.

187

SELECTION SCREENS

Begin by declaring the TABLES statement for zemployees. Then declare a DATA statement

to hold the value of the last employee number that has been used in the table. This can be

done with a work area declared LIKE the employee number field of the table.

Type “INITITIALIZATION.”, to begin the event block, followed by a SELECT statement

where all records from zemployees are selected, and the work area is populated with the

employee number field:

Then add a WRITE statement for the work area to output to the screen after the loop.

Note that as the SELECT statement is a loop and does not contain a WRITE statement in-

side it, the WRITE statement at the end only writes the final employee number which

populates wa_employee, the last one which was used.

At Selection Screen
The “at selection screen” event is the next event block in the process. This will always be

executed, if present, before the report can be processed. This, then, would be the ideal

place to check the value which has been entered by the user as a new employee number.

The entry screen will be looked at later, but here some code will be written which will al-

low some kind of error message to be shown if an incorrect value is entered, telling the

user to correct their entry.

The PARAMETERS statement will be used, though will not be gone in detail until later. This

statement, allows you to declare a parameter input box which will appear on the screen.

This works similarly to a DATA statement - “PARAMETERS: my_ee LIKE zemployees-

188

SELECTION SCREENS

employee.”, declaring the parameter as having the same properties as the employee

number field.

Then declare the AT SELECTION-SCREEN event. This is declared with the addition ON, and

my_ee added. This specifies that the 'at selection screen' block refers specifically to this

parameter.

After this, an IF statement can be written, displaying an error message if the parameter

value my_ee entered by the user is greater than the value held in wa_employee, the last

employee number used:

As mentioned earlier, there is no need to terminate event blocks, as they are terminated

automatically when a new one begins. Hence, the INITIALIZATION block ends as soon as

the AT SELECTION-SCREEN block begins.

Parameters
Now, the PARAMETERS statement will be looked at in greater detail. Having defined the

my_ee variable using this statement, the system will now automatically know that a selec-

tion screen is going to be generated. This statement is all that is necessary to display a

field in a selection screen. If you display just the PARAMETERS variable on the screen, it

will appear like this:

189

SELECTION SCREENS

The syntax for PARAMETERS is very similar to the DATA statement. A name is given to the

variable, a type can be given or the LIKE statement can be used to give the same proper-

ties as another field already declared. An example appears below, followed by the output

screen when this is executed:

The DOB parameter takes on the same attributes as the DOB field in the table, to the ex-

tent that it will even offer a drop-down box to select a date. The my_numbr parameter is

not related to another field as has been declared as an integer type parameter. Addition-

ally, note that parameter names are limited to 8 characters. Also, just like the DATA

statement, a parameter can hold any data type, with the one exception, floating point

numbers. You will notice also that the parameters in the output are automatically given

text labels. The name of the parameter from the program, converted to upper case is used

by default.

Now, some additions to the PARAMETERS statement will be examined.

DEFAULT

If you add this to the end of the statement follow by a value, the value will appear in the

input box on the output screen giving a default value that the user can change if they

wish.

190

SELECTION SCREENS

OBLIGATORY

To make the field mandatory for the user, the addition OBLIGATORY is used. A small tick-

box will then appear in the field when empty, to indicate that a value must be inserted

here. If one tries to enter the report with this empty, the status bar will display a message

telling the user an entry must appear in this field:

Automatic Generation of Drop-Down fields

For the next parameter, the zemployees2 table will be used. This must be added to the

TABLES statement at the top of the program. A new parameter, named my_g here is set

up for gender:

Since a number of values allowed to be entered for the gender field have been suggested

in the table itself, a drop down box will appear by the parameter in the output window.

Here one can see the ABAP dictionary working in tandem with the program to ensure that

values entered into parameters correspond with values which have been set for the field

in the table:

191

SELECTION SCREENS

If one manually types an illegitimate entry into the gender box, an error message will not

appear. Here, the VALUE CHECK addition is useful, as it will check any entry against the

valid value list which is created in the ABAP dictionary. Now if one tries to enter an invalid

value for the field, an error message is shown in the status bar:

(After this example, the zemployees2 table and gender parameter can be removed.)

LOWER CASE

By default parameter names are converted to upper case, to get around this one must use

the LOWER CASE addition. Create a new parameter named my_surn and make it LIKE

zemployees-surname field. Give this a default value of ‘BLOGS’ and then add the LOWER

CASE addition. When this is output, BLOGS still appears in upper case, but lower case let-

ters can be added to the end of it. If these were entered without the LOWER CASE addi-

tion, they would automatically convert to upper case:

192

SELECTION SCREENS

There are other additions which can be included with parameters, but these are generally

the most common ones. To look at others, one can simply select the PARAMETERS state-

ment, and press F1 for the ABAP help screen, which will explain further additions which

can be used.

Check Boxes and Radio Button Parameters
Check boxes and radio buttons can both be used to simplify the task of data entry for the

end user. These are both forms of parameters.

A check box must always be of the character type ‘c’ with a length of 1. The contents

stored in this parameter will either be an ‘x’, when it is checked, or empty when it is blank.

Define a new parameter called my_box1. Since this is type c, the type does not have to be

declared. The field name is then followed by “as checkbox”. Note that the output differs

slightly from other parameters by seeing the box on the left and the text to its right:

Radio buttons are another common method for controlling the values stored in fields. A

normal parameter field allows any value to be entered, while a check box limits the values

to 2. Radio buttons, however, give a group of values which the user must choose one op-

tion from. Again, these are of data type c with 1 character.

To create a group of 3 radio buttons, 3 parameter fields must be set up. Each radio button

must be given a name, in this example to select between colours (don’t forget, parameter

names are limited to 8 characters), followed by “radiobutton”. These are then linked to-

gether by adding the word “group”, followed by a name for the group, here “grp1”. This

can be seen in the image below:

193

SELECTION SCREENS

Select-Options
Next we will take a look at SELECT-OPTIONS. Parameters are useful for allowing the user

to select individual values.. However, when multiple values are required, rather than set-

ting up many different parameters, the select-options statement can be used.

The first thing to consider here is that internal tables will be used to store the values en-

tered by the user. A detailed discussion regarding internal tables will be returned to, but

for now, only what is necessary for select options will be looked at.

When a user wants to enter multiple individual values, or select a value range, these must

be stored in a table in memory which the program can use. The internal tables to be used

here are, similarly to parameters, limited to 8 characters and contain 4 fields which are

defined when the statement is created. These fields are “sign”, “option”, “low” and

“high”. The image below demonstrates the structure of this table:

When a user makes a choice, filling in a selection field on the screen, whether this is a sin-

gle value or a range of values, a record is generated and put into this internal table. This

table allows the user to enter as many records as they wish, which can then be used to

filter the data.

194

SELECTION SCREENS

The “sign” field has a data type of c, and a length of 1. The data stored in this field deter-

mines, for each record, whether it is to be included or excluded from the result set that

the final report selects from. The possible values to be held in this field are ‘I’ and ‘E’, for

‘inclusive’ and ‘exclusive’.

The “option” field also has a type of c, but this time a length of 2. This field holds the se-

lection operator, such as EQ, NE, GT, LT, GE, LE (in order, as discussed previously: equal to,

not equal to, greater than, less than, greater than or equal to, less than or equal to), as

well as CP and NP. If a wild card statement is included here (such as * or +), the system will

default this to CP.

The “low” field holds the lower limit for a range of values a user can enter, while the

“high” field is the upper limit. The type and length of these will be the same as those for

the database table to which the selection criteria are linked.

The reason for using select-options is that parameters only allow for one individual spe-

cific value to be used. If for example, one is using parameters to select from the DOB field

in the zemployees table, these are very specific and so are likely to return, at best, one

result, requiring the user to know the exact date of birth for every employee. The select-

options statement allows one to set value ranges, wild cards and so on so that any selec-

tion within that will return results.

First, type the statement SELECT-OPTIONS and then give a name to the field to be filled,

for example my_dob. To declare the type, the addition FOR is used. This then link this to

zemployees-dob:

When this is output, 2 fields will appear, plus a ‘Multiple selection’ button:

A value range can be selected by entering the low value into the left field and the high

value in the right field. These two fields both include calendar drop down menus, making

195

SELECTION SCREENS

entry here even easier. If the ‘multiple selection’ button is clicked, a new pop-up box ap-

pears:

The fields here allow multiple single records, or value ranges to be searched for, as well as,

in the case of the latter two tabs, excluded from one’s search results. All of the fields here

as well correspond to the initial data type, and so will all feature calendar drop-downs.

The buttons along the bottom add functionality, allowing values to be copied and pasted

into the rows available, and indeed to create and delete rows among other options. Addi-

tionally on the selection screen, if one right-clicks either field and chooses ‘options’, a list

of the logical operators will be offered, allowing further customisation of the value ranges

selected. This can also be done in the multiple selection box:

196

SELECTION SCREENS

By filling in the fields offered via the SELECT-OPTIONS statement on the selection screen,

each of the fields of the internal table can then be filled depending on the options chosen,

telling the system exactly which values it should (and should not) be searching for.

Select-Option Example
With the select-options defined, some code will now be added.

Create a SELECT statement, selecting all the records from zemployees. Then, inside the

loop, add an IF statement, so that if a record from the zemployees table matches the

value range selected at the selection screen, the full record is written in the output screen.

The IN addition ensures that only records which meet the criteria of my_dob, held in the

internal table, will be included, and where they do not, the loop will begin again:

197

SELECTION SCREENS

Put a breakpoint on the SELECT statement, so that you can watch the code’s operation in

debug mode. When you execute the code the selection screen will be displayed. Initially,

do not enter any values for the DOB field. Execute the program and the debugger will ap-

pear. Double click the my_dob field in the field mode. It will be shown to be empty and an

icon will appear to the left indicating that it represents an internal table. If this is double

clicked, the contents of the internal table are shown. Here, all fields are empty as no val-

ues were inserted:

Run through the code and all of the records from the table should be written to the out-

put screen, as no specific selection criteria were set.

Run the program again but this time include a value in the DOB field of the selection

screen. This one corresponds to one of the records in the table:

As the select loop is processed, eventually a matching record will be found. When this oc-

curs, rather than skip back to the beginning of the loop, the WRITE statement is executed:

198

SELECTION SCREENS

Run the program again but this time try using the multiple selection tool to select several

values for the DOB field, as well as excluding some:

199

SELECTION SCREENS

The internal table now contains several entries for values to search for and to exclude

from its search:

The records stored in the select-option table for my_dob show the different types of data

the system uses to filter records depending on the entries we make in the multiple selec-

tions window. Once the program is fully executed the output window then appears like

this:

200

SELECTION SCREENS

Select-Option Additions
As with most statements, there are a number of additions which can be appended to SE-

LECT-OPTIONS. Similarly to PARAMETERS, one can here use OBLIGATORY and LOWER

CASE, and others in exactly the same way. Unique to this statement, however, is NO-

EXTENSION, which prevents the multiple selection option from being offered to the user.

The ability to select a value range still exists, but extending this via multiple selections is

prevented:

Text Elements
We have already touched on the fact that when parameters and select-options are de-

clared the fields are labelled with the technical names given in the code. These fields still

must be referenced using the technical name. However, it will be much preferable for the

user to see some more descriptive text. Let’s see how we can do this by using Text Ele-

ments.

Every ABAP program is made up of sub-objects, like text elements. When one copies a

program, the list of options offered asks which parts of the program one wants to copy.

The source code and text elements here are mandatory, these are the elements which are

essential to the program.

When text elements are created, they are created in text pools, which hold all of the text

elements of the program. Every program created is language independent, meaning that

the text elements created can be quickly and easily translated to other languages without

the need for the source code to be changed.

There are three kinds of text elements which can be used in a program, selection texts,

mentioned above, are one. The other two are text symbols and list headings. Text symbols

can be created for a program so that one does not have to hard code literals into the

source code. List headings, as the name indicates, refer to the headings used when creat-

ing a report. By using these instead of hard coding them into the program, one can be cer-

tain that they will be translated if the program is then used in another language. Also, if

201

SELECTION SCREENS

the headings need to be changed later on, one can just change the list headings set rather

than going into the code and doing this manually.

Selection texts allow text elements to be displayed on the screen so that the user does not

have to see the technical names for fields and the like. There are several ways to navigate

to the screen where these can be created and changed. At the initial ABAP editor screen,

there is in fact an option for creating text elements:

Alternatively, if one is already inside the program, this can be reached through the ‘Goto’

menu, ‘Text elements’ and select ‘Selection texts’:

If this is clicked, a screen will appear where selection texts can be created for all of the

technical field names which appear at the selection screen:

202

SELECTION SCREENS

The third column here is for ‘Dictionary reference’, which recognises that some of these

fields are linked to fields already created in the ABAP dictionary. If one checks this box and

clicks save, the field names from the initial fields and the ABAP dictionary automatically

appear. You can of course choose not to use the text here and overwrite it yourself.

For the others fields, the text must be manually typed in, up to a 30 character limit:

203

SELECTION SCREENS

Text Elements must then be activated and once this is done, they are automatically saved

and will appear on the selection screen in place of the technical names. The output screen

will now look like this:

Variants
When a user fills in a selection screen, there is the option of saving the entry. This is called

a variant:

204

SELECTION SCREENS

Once this is done, a new screen appears. As long as a name and description are given, this

can be saved for use later on:

Once saved a new button appears on the selection screen next to the execute button,

named ‘Get variant’ allowing the variant entry to be recalled.

205

SELECTION SCREENS

A box appears allowing a variant to be selected and when selected, the fields are popu-

lated with the data from that particular entry. Another way to create variants is via the

initial ABAP editor screen.

Choose the ‘Variants’ option. A new variant name can be entered and then the variant can

be created:

Once ‘Create’ is clicked, the selection screen appears and you can proceeds as normal,

saving the attributes of the new variant once the entries have been made. You can then

choose between displaying and changing the values and attributes of the variant (‘Values’

will show the selection screen, ‘Attributes’ the screen below. These two views can be

switched between):

206

SELECTION SCREENS

The ‘Only for background processing’ check box allows you to tell the system to only use

this variant as part of a background job. Here, a job can be scheduled to run overnight so

the program does not in fact have to be monitored.

The ‘Protect variant’ option prevents other users from being able to select this variant and

using it on their reports.

‘Only display in catalog’ effectively makes the variant inactive, it will exist, but when a

user views the drop-down menu of existing variants, it will not appear.

207

SELECTION SCREENS

The ‘Field attributes’ section allows the list of possible attributes displayed to be assigned

to the fields in the bottom section of the screen, via the check boxes. Experiment with the

different options available and see the results. For example, you can see that the ‘Re-

quired field’ check box for ‘Employee number’ has been filled here, as this was labelled

OBLIGATORY in the program. The P’s and one S which appear by the fields simply refer to

whether each field is a parameter or select-option.

Choose ‘Protect field’ for the Date of Birth field; it will no longer be possible to change the

value set until such time as this box is un-checked. In the image below you can see this

field has been greyed out and cannot be changed:

When large selection screens are created, users will regularly create variants so that, if

necessary, the same data can be used repeatedly when running reports, saving the time it

would take to fill in the information again and again. Unnecessary fields, or fields which

will always hold the same value can be protected so that filling in the screen becomes a

much simpler and less time consuming task for the end user.

At the ABAP editor’s initial screen, there is in fact a button which allows the program to

run with a variant, directing one straight to the selection screen with the variant’s values

already present:

208

SELECTION SCREENS

The ABAP editor will likely not be accessed by the user but reports can be accessed via the

‘System’ menu, ‘Services’, and then ‘Reporting’. Selecting this presents the ’ABAP: Execute

Program’ screen, which could be described as a cut-down version of the ABAP editor

screen, minus the editing functionality. From here the program can again either be exe-

cuted directly or executed using a variant which can be selected from the menu which is

offered:

209

SELECTION SCREENS

If the program is executed directly and the user then wants to use a variant, this can also

be done via the ‘Goto’ menu:

Text Symbols
We will now take a look at other text objects starting with Text Symbols. These are used to

replace literals in a program. For example, when the WRITE statement is used, one can

choose to use text symbols to reuse text which has already been set up. This also gives the

added functionality of being able to use translated text within the program. This allows

hard coded literals to be avoided and text symbols used in their place.

Text symbols effectively function as placeholders for text. So, rather than having “WRITE:

/ ‘Surname’.” multiple times in the code, you can avoid using the literal by using “WRITE:

/ text-001.” which here would refer to a text symbol which can be set up with the text

“Surname” itself.

210

SELECTION SCREENS

Text symbols are always declared with the word ‘text’ followed by a dash and a three digit

number. This means that up to 1000 text symbols can theoretically be used in a program,

of which each one can be translated into as many languages as one wishes. One thing to

remember here is that text symbols are always limited to 132 characters in length.

To create a text symbol, you can use the ‘Goto’ menu, select ‘Text elements’ and then

‘Text symbols’, or you can use forward navigation. Just double-click ‘text-001’. A window

will then appear asking if you want to create this object, select ‘Yes’. The Text Elements

window will then appear and text can be entered for the new text symbol.

Here, include the word ‘Surname’. The column on the left references the text symbol id

‘001’. The two columns on the right note the text’s length and maximum length:

This can then be activated and you can step back to the program. If the code is then exe-

cuted, the word ‘Surname’ will be output twice, the first from the WRITE statement with

the literal, the second from the WRITE statement with the newly created text symbol:

It is advisable to use text symbols rather than literals as often as possible as it is much eas-

ier to change the text symbol once than to sift through the code to find and change many

literal values. Additionally, using text symbols gives the added benefit of translatability.

211

SELECTION SCREENS

Text Messages
The next thing to be examined here is messages. When one wants to give feedback to the

user, literals can be used, but as stated above, this is to be avoided as far as possible. To

use messages then, these must first be stored in a message class, which is in turn stored in

a database table called T100.

At the ABAP dictionary’s initial screen, type ‘T100’ into the database table field and choose

‘Display’:

If one views the contents of this, one can see the four fields displayed. One for language

(here D, referring to German), one for the application area, one for the message code and

one for the message text:

To create new messages to be used in your program, forward navigation can be used, or

the transaction SE91 can be directly accessed:

212

SELECTION SCREENS

First, create a message class. These must again follow the customer name space rules,

here beginning with the letter Z. Let’s call this ZMES1 and choose Create. Messages are

distinct from text elements as they are not themselves part of the program created. They

exist independently. They are instead stored in the T100 table. This means that messages

can be reused across many programs.

The attributes must be filled in, creating a short text. Then, in the messages tab, the text

to be used can be created:

213

SELECTION SCREENS

Remember that, when the AT SELECTION-SCREEN event was created, an IF statement was

used so that if the employee number given by the user was greater than the last employee

number used in the table, a message would be displayed. Here, the text for that message

can be created:

Once the text is entered, it can be saved.

There are a number of message types which can be used, as this table explains:

A Termination
Message

The message appears in a dialog box, and the program terminates.
When the user has confirmed the message, control returns to the
next-highest area menu.

E Error
Message

Depending on the program context, an error dialog appears or the
program terminates.

I Information The message appears in a dialog box. Once the user has confirmed
the message, the program continues immediately after the MESSAGE

statement.

S Status
Message

The program continues normally after the MESSAGE statement, and

the message is displayed in the status bar of the next screen.

W Warning Depending on the program context, an error dialog appears or the
program terminates.

X Exit No message is displayed, and the program terminates with a short
dump. Program terminations with a short dump normally only occur
when a runtime error occurs. Message type X allows you to force a
program termination. The short dump contains the message ID.

For this example, type E, an error message, will be used. Depending on where this type of

message is used, it will have a different effect. Here, it will be used at the “at selection-

screen” and the program’s execution will pause, the error message will be displayed and

214

SELECTION SCREENS

the user will be allowed to amend their entry. When the new entry appears, the event will

begin again. If an error message is used elsewhere, outside of an event in the main body

of the code, when this is triggered the program will terminate entirely.

To include the newly created message in the code, then, the syntax is “MESSAGE

e000(ZMES1).” The ‘e’ refers to the error message type, the ‘000’ to the number assigned

to the message in the message class, and then ‘ZMES1’ to the class itself:

The INITIALIZATION event will populate wa_employee with the last, highest employee

number used in the table, and then, at the AT SELECTION-SCREEN event, the value en-

tered can be checked against this. If it is higher, the error message will display. You can

monitor these values in debug mode to watch the code in action. Here, the number is

higher so, once executed, the selection screen will be returned to and the message dis-

played in the status bar:

215

SELECTION SCREENS

Once a legitimate, lower value is entered, the program will continue as normal without

triggering the error message.

An addition which can be used with the MESSAGES statement is WITH. Here, a field can be

specified, for example to display the invalid value which was entered by the user in the

message itself. The WITH addition allows up to 4 parameters to be included in the error

message. To do this, one must ensure the error message is compatible.

Create another message in the message class screen, this time with an & character. When

used in conjunction with the WITH addition, this character will then be replaced by the

value in the specified parameter:

Save the new message, add “WITH my_ee” to the MESSAGES statement and change the

number of the message referenced in the code to the new 001 message:

As messages created are not specific to the program itself, but can be used across the en-

tire system, it is usually worth checking if an appropriate message for the task you are per-

forming already exists, rather than continually setting up new messages.

216

SELECTION SCREENS

Skip Lines and Underline
Now, a look will be taken at formatting selection screens. This will allow the screen to be a

lot easier to navigate and so on for the end user. Parameters and select-options have al-

ready been set up, but as yet no layout options have been implemented allowing the sys-

tem to place the objects by itself. This is generally not sufficient. For example, when a

group of radio buttons appear, they should be distinct and positioned in a group on their

own, clearly separated from other parts of the screen.

The SELECTION-SCREEN statement, and its associated additions allow this kind of format-

ting to be done. One must locate where in the code the screen layout begins to be re-

ferred to. Here, this is at the top when PARAMETERS is declared. In the line above this,

type the statement SELECTION-SCREEN. Additions must then be added.

First, to add blank lines you can use the SKIP addition, followed by the number of lines to

be skipped. If you only want to skip 1 line then the number can be omitted as this is the

default values. This line of code must then be moved to the place where you want the line

to be skipped. Place it under the my_ee parameter. Note that the PARAMETERS chain is

now broken, so another PARAMETERS statement must be added:

217

SELECTION SCREENS

To add a horizontal line, the ULINE addition can be used:

There are further additions which can be added to ULINE to determine its position and

length. The code in the image below sets the position of the line to the 40th character

from the left of the screen, and its length is set to 8 characters:

218

SELECTION SCREENS

Comments
Comments allow text to be placed on screen without creating new fields. The SELECTION-

SCREEN statement is again used, with the addition COMMENT. Similar additions to ULINE

can be used to set the position and length of the comment. This is then followed by either

a text element which has already been set, or a field name. This is not declared with a

DATA statement, but is determined by the length which the comment is set. Here, the text

element text001 is used, which reads ‘Surname’, and this will appear 40 characters from

the left:

If you do not want to use a text element, a new field can be created here. Copy the initial

SELECTION-SCREEN statement and add the new variable “comm1”. This variable is cur-

rently empty and must be given a value. This must be added in the INITIALIZATION part of

the code, so that it is initialised when the program starts. Here, write “comm1 = ‘Hello

SAP’.”:

219

SELECTION SCREENS

Format a Line and Position
Now, let’s take a look at how to format a single line on the selection screen. When indi-

vidual lines for the selection screen are defined, the start and end of these lines must be

declared, and in between these lines the parameters and select-options appear.

Above the formatting code already created, type “SELECTION-SCREEN BEGIN OF LINE.”,

and then underneath “SELECTION-SCREEN END OF LINE.” Anything appearing between

these statements will now all appear on the same line. Then, alter the formatting code

slightly so that this will work, removing the ULINE statement, moving the text001 com-

ment (which reads ‘Surname’) to the first space on the line, and the comm1 comment

(reading ‘Hello SAP’) to the 20th space and change the length of this to 10 characters. Also,

remove the /n which put these on a new line. Finally, add a new PARAMETERS statement

beneath the second comment in the code, named ‘ABC’, with a length of 5:

220

SELECTION SCREENS

You can now see that the code between the BEGIN and END OF LINE statements now all

appears on one line; its formatting determined by the positions and lengths assigned to

each statement. Note that here the parameter was not automatically given a description

(the technical name of the field) as others have been. This is because specific comments

have been used on the same line. When you are formatting a line in this way, he com-

ments can be used to act as descriptions for the field.

Another addition, which can only be used within BEGIN and END OF LINE, is POSITION.

This is not commonly used because this can effectively be set by alternate methods, as

above. However, if one desires, the position of the next element can be set separately.

Here, the parameter will appear 30 spaces into the new line:

Note that here the technical name still does not appear, as the parameter is still between

the BEGIN and END OF LINE statements.

There is also a further option which can be included with the POSITION addition. The de-

fault positions of parameters and select-options on the screen are referred to as ‘position

low’ for the left hand side, where standard parameters and the low end of value ranges

appear, and ‘position high’ for the right hand side, where the upper end of a value range

would appear. These default positions can be used with the POSITION addition. To place a

parameter in the ‘position high’ position, you would include pos_high at the end of the

statement:

221

SELECTION SCREENS

You can see that the parameter now matches up with the ’position high’ default value

when compared to the upper end of the Date of Birth value range. Unsurprisingly, this is

replaced with pos_low to make it correspond to the default ‘position low’ column.

Element Blocks
When you are creating selection screens, it is common practice to group certain fields to-

gether. You can make use of these element blocks, which will draw frames around the cer-

tain groups of fields which are designated. These frames can then be given frame labels.

Bear in mind when looking at these it is possible to nest element blocks within other ele-

ment blocks, allowing individual sections of the selection screen to be subdivided.

The syntax for this is very similar to that of BEGIN and END OF LINE. Above where these

statements were tested before, add the code “SELECTION-SCREEN BEGIN OF BLOCK”, fol-

lowed by a name for this block, here “myblock1”. To then add a frame to the block, the

WITH FRAME addition is then used. The frame can then be given a title using, like com-

ments, either a text element or separately defined variable. This is done after the WITH

FRAME addition, adding TITLE and then, here ‘text-001’, which as before contain the val-

ues ‘Surname’.

222

SELECTION SCREENS

Having done all of this, you must remember to then use END OF BLOCK followed by the

block name so that the system knows which block is ending:

Element blocks, when used correctly, add context to the selection screen, making it easier

for the end user to understand the screen entry requirements.

223

INTERNAL TABLES

Chapter 12 – Internal Tables

Introduction
Dealing with internal tables is one of the most important parts of working with ABAP. In-

ternal tables have been hinted at briefly before, but not examined in any great depth. This

chapter will do precisely that. If one is working in ABAP in any way at all, it is crucial to un-

derstand internal tables, as almost every program will use them. You have to understand

both the old method of using header lines, and the new method using separate work ar-

eas. SAP has existed a long time, and while practices change, one will still often find old

methods being used. When one is creating new programs, though, the newer method is

always to be used.

Internal tables only ever exist when a program is running, so when the code is written, the

internal table must be structured in such a way that the program can make use of it. You

will find that internal tables operate in the same way as structures. The main difference

being that Structures only have one line, while an internal table can have as many as re-

quired.

Internal tables are used for many purposes in ABAP. They can be used to hold results of

calculations to then use later in the program, hold records and data so that this can be

accessed quickly rather than having to access this data from database tables, and a great

number of other things. They are hugely versatile, as they can be defined using any num-

ber of other defined structures, allowing, for example, many tables to be grouped to-

gether and then placed into one internal table.

The basic form of these consists of a table body, which is all of the records within the ta-

ble, and a header record in the case of the older-style internal table. In the case of the

newer style of internal table, the header record is absent and replaced by a separate work

area. The header line or work area is used when you read a record from the internal table,

providing a place for this ‘current’ record to be placed which can then be accessed di-

rectly. The header line or work area is also used and populated if you need to add a new

record to the table, which is then transferred from the structure to the table body itself.

224

INTERNAL TABLES

Previously, the TABLES statement has been used to include a table which has been created

in the ABAP dictionary in a program. Internal tables, on the other hand, have to be de-

clared themselves. When this is done, you must also declare whether a header record or

separate work area will be used.

When creating new programs with internal tables it is best practice to use separate work

areas. Using a header record has a number of restrictions, for example, you are not able to

create multi-dimensional tables. We will not be cover multi-dimensional tables at length

here, but if you plan to go further with ABAP, they will become important.

There are some restrictions on the records which can be held in internal tables. The archi-

tecture of an SAP system limits the size of internal tables to around 2GB. It is also impor-

tant to bear in mind how powerful one’s SAP system is (the hardware and operating sys-

tem). It is generally best practice to keep internal tables as small as possible, so as to avoid

the system running slowly as it struggles to process enormous amounts of data.

Types of Internal Tables
Now the difference between the older and newer style internal tables has been men-

tioned, from here on, assume that it is the newer kind which is being discussed - an inter-

nal table with a work area.

An internal table can be made up of a number of fields, corresponding to the columns of a

table, just as in the ABAP dictionary a table was created using a number of fields. Key

fields can also be used with in internal tables and when creating these internal tables offer

slightly more flexibility. In the ABAP dictionary, using key fields is imperative to uniquely

identify each record. With internal tables, one can specify a non-unique key, allowing any

number of non-unique records to be stored, allowing duplicate records to be stored if re-

quired.

Different types of internal tables can also be created, so that data can be accessed in the

most efficient manner possible.

Standard Tables

First, there are standard tables. These give the option of accessing records using a table

key or an index. When these tables are then accessed using a key, the larger the internal

table is, the longer it will take to access the records. This is why the index option is also

available. Standard tables do not give the option of defining a unique key, meaning the

225

INTERNAL TABLES

possibility of having identical lines repeated many times throughout the table. Addition-

ally, though, this means that standard tables can be filled with data very quickly, as the

system does not have to spend time checking for duplicate records. Standard tables are

the most commonly used type of internal table in SAP systems.

Sorted Tables

Another type of internal table is the sorted table. With these, a unique key can be defined,

forcing all records in the table to be unique, removing duplication. These can again be ac-

cessed via the key or index. As the records are all unique, using the table key to find re-

cords is much quicker with sorted tables, though still not the fastest in all situations. It is

often preferable to use a sorted table over a standard table, given the faster access speeds

and the fact that this kind of table will sort records into a specific sequence. This gives one

a substantial performance increase when accessing data.

Hashed Table

The final type of internal table to be discussed here is a hashed table. With these, an index

is not used to access the data, only a unique key. When it comes to speed, these are likely

to be the preferred option. These are recommended particularly when one is likely to be

creating tables which will be very large, as accessing data in large table is likely to be fairly

laboured when using standard or sorted tables. These tables use a special hash algorithm

to ensure the fast response times to reading records are maintained no matter how many

records are held.

Despite the speed of hashed tables, you will however find that standard and sorted tables

are generally used significantly more in SAP programs. Because of this, the majority of fo-

cus here will be put on these.

Internal Tables - Best Practice Guidelines
As SAP has been around a long time, many programs exist that conform to using the older

style internal table. You must be aware of this without falling into bad habits and using

this style. It is now considered best practice to always use the newer style of internal table

in SAP, ensuring that the programs created will be continue to be usable in the future,

once the older style has been completely abandoned. Both old and new styles will be dis-

cussed here, so that you gain a degree of familiarity with the old style which persists in

places, but when creating programs of your own, the new style should always be used.

226

INTERNAL TABLES

Creating Standard and Sorted Tables
Create a new program in the ABAP editor called Z_EMPLOYEES_LIST_03 to use for the

creation of internal tables. To begin to declare an internal table, the DATA statement is

used. The program must be told where the table begins and ends, so use the BEGIN OF

statement, then declare the table name, here ‘itab01’ (itab is a commonly used shorthand

when creating temporary tables in SAP). After this, the OCCURS addition is used, followed

by a number, here 0. OCCURS tells SAP that an internal table is being created, and the 0

here states that it will not contain any records initially. It will then expand as it is filled

with data:

On a new line, create a field called ‘surname’, which is declared as LIKE zemployees-

surname. Create another field called ‘dob’, LIKE zemployees-dob. It may be useful initially

to give the field names in internal tables the same names as other fields which have been

created elsewhere. By doing this, later on the MOVE–CORRESPONDING statement can be

used to move data from one table to another. Finally, declare the end of the internal table

is declared with “END OF itab01.”

The structure of the internal table is now created, and code can be written to fill it with

records. Using the OCCURS statement above, this automatically tells the system that an

old style internal table with a header record is being used.

As mentioned earlier, it is advisable to always create the new style of internal table, allow-

ing ABAP objects and so on to be used. With the new style of object-oriented program-

ming it is encouraged to keep all the objects of your code separate, so that they can be

reused in other programs and so on. To create the new style of internal table, the code is

slightly different, separating out the individual data objects, like building blocks, which can

then be put together to create new data objects later and so on. The manner in which this

is done may seem significantly more laborious, but when you are working with larger,

more complicated programs, the benefits will be clear.

227

INTERNAL TABLES

Create an Internal Table with Separate Work Area
Instead of using the DATA statement, this time start by defining a line type, using the

TYPES statement. Following this, the BEGIN OF statement is used, followed by a name,

here ‘line01_typ’. Below this, the surname and dob fields from above can be created as

before. Then the END OF statement is used to end the line type definition:

Rather than defining the entire table structure at once, here only the structure of one line

is defined. The table itself has not yet been defined. As a result of this, the OCCURS state-

ment has not been used.

Once the line has been defined, next you define the table type. Again, use the TYPES

statement, followed this time by the table, here ‘itab02_typ’ (note the _typ addition to

the end as it is only the table type being defined, not the table itself). Follow this with

“TYPE STANDARD TABLE OF line01_typ.”; telling the system it will be a standard table

containing the structure of the line-type defined above:

In place of the OCCURS clause used for the old style of table, you can optionally add to the

end of the line “INITIAL SIZE (n)” where (n) would be a number corresponding to the size

you initially want the table to be. However, this is completely optional and is not fre-

quently used.

If you want to create a sorted table, the ‘STANDARD’ in the above line is replaced with

‘SORTED’. You then have to specify the table key, with the addition “WITH UNIQUE KEY

(field name)” where (field name) would be one of the fields set up in the line type defini-

tion, in this example ‘surname’. If you want more than one key field, these are simply then

separated by commas:

228

INTERNAL TABLES

Next, the table itself must be declared. As the table type defined was based on the line

type previously defined, the table itself will be based on the table type. Here, the DATA

statement returns, followed by the name of the table, ‘itab02’, and the TYPE of table to be

used - ‘itab02_typ’:

You still have the option to use a header line, but this must be explicitly stated when cre-

ating an internal table in this way. To do this, you simply add WITH HEADER LINE to the

code above. This is however, as stated several times already, generally not advisable.

The final thing to do when creating an internal table this way is declare the work area

which will be used in conjunction with the table. Remember that the work area is com-

pletely separate from the table, which has now already been created, allowing one to

work with the data from the table in a way which is removed from it. This also allows for,

if one wants, the same work area to be used for multiple tables, as long as they have the

same structures, an example of reusing the code.

To declare Work Area, again use the DATA statement followed by the work area name,

here ‘wa_itab02’. After this, the TYPE statement is used to specify the line type, here we

can use the one already defined as ‘line01_typ’:

While the manner in which the old style table is created may certainly seem easier, the

newer method is much better and much more flexible. For example, having written all of

the above code, if one then wanted to create a new table with the same structure, only

one new line of code would have to be written, since the line and table types have already

defined. The table ‘itab03’, for example, could be created simply by adding one line of

code:

Filling an Internal Table with Header Line

229

INTERNAL TABLES

When you are reading a record from an internal table with a header line, that record is

moved from the table itself into the header line. It is then the header line that you pro-

gram works with. The same applies when creating a new record. It is the header line with

which you work with and from which the new record is sent to the table body itself.

Below appears some slightly more extensive code for an old-style internal table, which can

then be populated:

The fields should broadly be familiar. The only new one here is ‘los’, representing ‘length

of service’, an integer type with a default value of 3.

To start to fill this table, you can use a SELECT statement to select all of the records from

the zemployees table and then use “INTO CORRESPONDING FIELDS OF TABLE itab01.”,

which will move the records from the original table into the new internal table into the

fields where the names correspond. This type of select statement is called an array fetch,

as it fetches all of the records at once, and places them in a new location. Notice that

there is no ENDSELECT statement here - it is not a loop that is created:

As the new los field does not have a corresponding field in the zemployees tables, every

record will have this field populated with the los’ default value of 3. Add a WRITE state-

ment for itab01-surname below just to assist in the debug session coming up. Set a break-

point on the SELECT statement, and execute the code to enter debug mode and observe

the code as it works.

230

INTERNAL TABLES

If you view the internal table before executing the next line of code here, you can see that

it is currently empty. The line with the hat icon represents the current contents of the

header line and below this, the lines of the internal table will be filled in. As you execute

the array fetch, all of the lines of the internal table are filled at once:

A different way of filling the table would be with the code below, this time with a select

loop filling each field one at a time, using the MOVE statement to move the data from one

table’s field to the other. Note that los is not present here since it does not have a field in

the zemployees table.

231

INTERNAL TABLES

If you debug this code, you can see how it operates line-by-line as opposed to the array

fetch which did all of the records at once. As you execute the first MOVE statement, it is

visible that the first employee number appears in the header record of the internal table:

Stepping through the code you will see the other fields gradually appear in the header line

until the end of the SELECT loop is reached. However, once this happens, since no code

has been included telling the program to append the data in the header record to the in-

ternal table, this will simply be overwritten by the next iteration of the loop. This is a

common mistake when using header lines and can be avoided by using the APPEND

statement.

Before the ENDSELECT statement add another line of code reading “APPEND itab01.”, tell-

ing the system to add the contents of the header line to the internal table.

232

INTERNAL TABLES

Move-Corresponding
In the example, the MOVE statement was used several times to move the contents of the

zemployees table to the corresponding fields in the internal table. It is possible however

to accomplish this action with just one line of code. You can use the MOVE-

CORRESPONDING statement. The syntax for this is simply “MOVE-CORRESPONDING

zemployees TO itab01.”, telling the system to move the data from the fields of

zemployees to their corresponding fields in itab01. This is made possible by the fact that

both have matching field names. When making use of this statement you need to make

sure that both fields have matching data types and lengths. This has been done here with

the LIKE statement previously, but if it is not, the results could be unpredictable:

233

INTERNAL TABLES

Next, copy the code with which the itab01 table was created to create another internal

table called itab02. This time, the fields will be populated with an INCLUDE statement, so

remove the fields between the BEGIN OF and END OF statements and replace them with

the code “INCLUDE STRUCTURE itab01.” This will create a new table with the same struc-

ture:

You are not limited to using the structure of another internal table, another table created

in the ABAP dictionary’s structure could be used with the same statement:

Using this method can save a lot of time coding, and can be enhanced further allowing you

to include multiple structures within one internal table, as below (though this example

would, in fact, just include two of each column as zemployees and itab01 have effectively

the same structures):

As long as the structures used have previously been defined in the system, this statement

can be used to include many structures within newly created internal tables. You can also

add new data statements as were previously used to declare internal table structures, ex-

tending the structures which have been included with new fields.

Let’s return to the array fetch method of populating internal tables. You will note that

when using this method, all of fields were filled simultaneously, without using the header

record. This is a very effective and quick method to use, given that there is no loop, so re-

cords do not have to be written to the table one at a time:

234

INTERNAL TABLES

Additionally, you do not have to use the * which selects all of the fields of zemployees, but

can specify the individual fields you want to move in this way. See the example below:

Filling Internal Tables with a Work Area
Now, if you are, following the newer method of using internal tables, the header record is

to be bypassed entirely and the table filled from a separate work area.

Return to the code which was shown above for creating a table with the new method,

shown below:

Here, the SELECT statement is used again. Since the line type only includes two fields, only

those two fields should be selected. Once they’re selected, INTO is used with the work

area specified as the area to populate. An APPEND statement is added to move the data

from the work area into the table itself. Finally, ENDSELECT is used:

An array fetch can also be used to populate the internal table. Note that here you can still

use the * to select all of the records in zemployees, but as the internal table has only two

of these corresponding fields, the rest will just be ignored:

235

INTERNAL TABLES

Using Internal Tables One Line at a Time
Now you know how to fill internal tables with data, a look will be taken at how to use the

data in them line-by-line.

Internal tables are just stored in memory, so cannot be directly accessed, their contents

can only be read via the work area, using a loop. The way this is done is slightly different

from database tables and, rather than using SELECT and ENDSELECT, LOOP and ENDLOOP

are used instead.

First, tables using a header line. Add some new code to your program as follows. Begin the

LOOP and specify the internal table by adding “AT itab01”. Code is then added to achieve

the desired outcome and the loop is closed with ENDLOOP. For example:

If you execute code in debug mode, you will see that for each loop pass, the header line

(represented by the hat icon) is filled with data before being written to the output screen:

236

INTERNAL TABLES

Modify
Now a look will be taken at how records in the table can be changed with the MODIFY

statement. Using the code below, the IF statement will check whether an entry’s surname

matches the set value of ‘JONES’. Where it does match, this will be updated to the new

value of ‘SMITH’ in the header line. The MODIFY statement will then update the internal

table itself with the new value. Note that the MODIFY statement here will not create a

brand new record, but will replace the existing JONES record in the table. If a MODIFY

statement is used in a loop, it is always the current line which is changed. This should not

be done if you are trying to modify key fields of an internal table that uses a unique key. If

the MODIFY statement is used outside of a loop, the record index number must be speci-

fied. The way in which the statement is used here can only be used in tables with index

tables or header lines:

Describe and Insert
In the same loop, the DESCRIBE TABLE statement will be used. This statement can be used

to find out information about the content of an internal table, including the number of

records the table holds, the reserve memory space used, and the type of table it is. In

practice you normally only ever really see this being used to find out the first of these three

pieces of information though.

237

INTERNAL TABLES

Beneath the ENDIF, add the line of code “DESCRIBE TABLE itab01 LINES line_cnt.” The

LINES part of this statement is used to request the value of the number of lines contained

in the internal table, and ‘line_cnt” is a new variable (of type i) set up to hold this value.

Up until now, the APPEND statement has been used to add records to the table. This

automatically inserts the new record at the end of the table. If you want to add a record

somewhere in the middle, the INSERT statement should be used, along with the table in-

dex number, to specify the position where a new record is to be inserted. For example, if

you used the index number 10, the new record would appear between the 9th and 10th

records in the table.

The syntax used here is “INSERT itab01 INDEX (n)” where (n) is the index number where

you want to insert the new record. In the example below, (n) is represented by line_cnt,

so the new record will be inserted at the line matching the index number which corre-

sponds to the value of line_cnt. The new record will be inserted on the line before the last

line of the table:

If you execute the code in debug mode, you will see the surname JONES is modified to

become SMITH. The DESCRIBE statement is then triggered and line_cnt given a value of 5.

Now, the last record in the table is that with the surname NORTHMORE, employee num-

ber 10000006, so once the loop completes, this is the record held in the header line. The

INSERT statement, then will add a copy of this record at the 5th line of the table. Remem-

ber that, as this is a standard type table, duplicate records are allowed. Because you are in

debug mode you can alter the header record’s values can be manually altered in debug

mode, so a new, non-duplicate record can in fact be created, with the surname BLOGS and

employee number 10000007. The image below shows the header record and internal ta-

ble just before and after the INSERT statement is executed:

238

INTERNAL TABLES

Read
The READ statement is another way in which you can access the records of an internal ta-

ble, allowing you to read specific individual records from the table. Given that these ex-

amples are using the old style method and as such using a header line, this record will be

sent to the header line and accessed from there.

The way that the internal table has been declared will affect the way in which a READ

statement’s code is written, bear this in mind. Depending on whether the table has a

unique key or not will also change how the READ statement is specified. For a standard

table without a unique key, the record’s index number is used:

The READ statement is generally the fastest way you can access the records of an internal

table, and using the index number is the fastest way to use this statement. It can be up to

14 times faster than a table key. However, you do not always know the index number of

the record which is to be read. If you are using a table key, the syntax would be as follows:

239

INTERNAL TABLES

This can also be done with non-unique keys, but this can become problematic. For exam-

ple, if you used ‘surname’ as your table key and the table contained 3 surnames which

were the same, the system sequentially reads the records resulting in the first occurrence

be read.

This type of code, particularly with key fields, can also be used with sorted and hashed

tables, which contain unique key fields.

Delete Records
To delete records from an internal table, you simply use the DELETE statement. This can

be used to delete either individual records or groups of records from a table. The fastest

way of achieving this is by specifying a table index. Note this only applies to standard and

sorted tables as only these two types of tables have an index. The syntax is as follows:

The header line is not used at all. The record to be deleted is directly accessed via its index

number.

This statement can also be used inside a loop:

The code here will identify any record with the surname SMITH and delete it. As you do

not know the index number of SMITH beforehand, the system variable sy-index is used,

which is always set to the index number of the current loop, so when the SMITH record

appears, sy-index will match its index number and the record will be deleted.

240

INTERNAL TABLES

The DELETE statement should not be used without the INDEX addition. If used outside of a

loop result in a runtime error, causing the program to crash. Inside a loop, it must be pre-

sent to adhere to future releases of the ABAP syntax.

Another addition to the DELETE statement is the WHERE clause. There are times where

when you will not know the index number of the record you want to delete, so more code

will have to be added. The WHERE addition is useful here, and can be combined with

other logic to locate the record(s) which should be deleted. Using this, you must always be

as specific as possible, otherwise data which should not be deleted can be. The syntax

should look like this:

Note that if there are multiple records which match the logical expression, they will all be

deleted.

Sort Records
The statement used to sort records in an internal table is, unsurprisingly, SORT. The basic

syntax is very simple:

Without any additions, this will sort the records in ascending order by the table’s unique

key. This works for sorted and hashed tables. For a standard table, you must use the BY

addition to specify which fields to sort by:

This would sort the table alphabetically in ascending order by the field SURNAME. Bear in

mind that SAP systems work with a wide variety of languages all at the same time, so if

you are sorting by language-specific criteria, AS TEXT should be added between the table

name and BY addition.

You are not limited to sorting just by one field; you can list up to 250 fields if desired. In

this example, FORENAME is added. Note that it is not necessary to separate these with

commas:

241

INTERNAL TABLES

Given the position of AS TEXT in the statement, this will be applied to all fields which are

specified. If you only wanted AS TEXT to apply to forename, it would be placed after the

forename:

By default, the system will sort records in ascending order. This can be changed to de-

scending as shown:

Work Area Differences
Having been through the statements with which one can work with internal tables with a

header record, the old style, now the differences in using these methods with the new,

encouraged style of operating with a separate work area will be looked at

Loops

First, let’s look at the differences in reading data in a loop. Here, the loop will read each

record from the internal table and place each record into the work area instead of the

header line. Because the work area is completely separate from the internal table, the

work area you want to use within the loop must be specified. The INTO addition is used to

specify the work area the record is to be read into:

In this example the records will be read one record at a time into the work area

wa_itab02, then the contents of the surname field will be written to the output screen.

242

INTERNAL TABLES

Modify

Using the MODIFY statement with this kind of internal table the statement must specifi-

cally reference the work area. The example below shows our previous MODIFY statement

example altered to work with a work area:

Insert

When working with the INSERT statement with this type of internal table, nothing needs

to change to the DESCRIBE statement. The only change is to the INSERT statement. Here

the new record held in wa_itab02 is to be inserted INTO the internal table itab02:

Read

The READ statement again follows a similar logic, insisting that the work area is also refer-

enced in the code:

Delete

Just as the DELETE statement does not require any reference to the header record to

work, nor does it require any reference to the work area. The statement deletes records

from the table directly by their index number or other key, so operates no differently at all

here.

243

INTERNAL TABLES

Delete a Table with a Header Line
When working with internal tables, you will often come upon situations where it is neces-

sary to delete all of the records in a table in one go, depending upon the specific task you

trying to complete. For example, if you fill an internal table in a high level loop, you will

want the table to be empty when it comes to the next iteration. This section will explain

how to delete internal tables and their contents, first for those with header lines, then for

those with work areas.

There is a certain sequence of tasks you should adhere to when deleting the contents of

an internal table with a header line. First, you should ensure the header line is clear, then

that the body of the table is clear.

CLEAR

To do the first of these tasks, use the CLEAR statement, followed by the table name. This

will clear out the header line only, and set the header-line fields to their initial value. To

clear the body of the table, the statement is used again, only this time followed by [], de-

leting all of the records in the table itself:

REFRESH

Alternatively, the REFRESH statement can be used. This will clear all records from the ta-

ble, but you must bear in mind that it does not clear the header record, which will still

contain values:

FREE

You could also use the FREE statement, with the same syntax as REFRESH. This statement

not only clears out the internal table, but also frees up the memory which it was using. It

does not mean the table ceases to exist entirely, but no longer is operating in memory.

With this statement, like REFRESH, the header line is unaffected, so the first CLEAR state-

ment must always be used in conjunction with both of these:

244

INTERNAL TABLES

Delete a Table with a Work Area
To delete internal tables which are using work areas, similar methods are used. However,

as the work area is an entirely different structure, any code written which will affect the

internal table will not affect the work area, and vice versa.

The CLEAR statement above, when used on a table without a header line, will clear the

whole contents of the table without needing to add the []. Remember that another CLEAR

statement must be used to empty the work area. The same applies to the REFRESH and

FREE statements. The syntax above will work, and a further CLEAR statement must be

used to empty the work area. In the examples below, assume itab01 and wa_itab01 refer

to the newer style internal table and its work area:

245

MODULARIZING PROGRAMS

Chapter 13 – Modularizing Programs

Introduction
As has been discussed before, it is good practice when using SAP to keep your programs as

self-contained and easy to read as possible. Try to split large, complicated tasks up into

smaller, simpler ones by placing each task in its own separate, individual module which

the developer can concentrate on without other distractions. Modularizing your code al-

lows single tasks to be focussed upon one at a time, without the distraction and confusion

which can be caused if the code you are working with is in the middle of a large, compli-

cated structure. Doing this makes the program much easier to work with and debug. Once

a small, modularized section of code is complete, debugged and so on, it does not subse-

quently have to be returned to, meaning the developer can then move on and focus on

other issues.

Creating individual source code modules also prevents one from having to repeatedly

write the same statements again and again, which in turn makes the code easier to read

and understand for anyone coming to it for the first time. This is also useful when it comes

to support. Anyone later having to support the program will again find the code much

more comprehensible if it is written this way.

It is important to concentrate on the design of a program. Rather than starting to code a

solution straight away, a solution should be mapped out, using pseudo-code or flow-

charts for example. Only when the design makes sense should the coding exercise begin.

Having a solution design also helps when modularizing a program, because this allows you

to see how the program can be split up into separate pieces, allowing you to then focus on

the individual pieces of development one piece at a time.

In the chapter covering selection screens, modularization was hinted at with the use of

processing blocks. However, modularization in your own programs is not just limited to

processing blocks. The SAP system allows for a number of techniques to be used to break

a program up into smaller, more manageable sections of code.

This chapter will look at the tools SAP provides for achieving this.

246

MODULARIZING PROGRAMS

Includes
When talking about modularization, what we are really talking about is taking a sequence

of ABAP statements and placing them in their own, separate module. We can then ‘call’

this code module from our program.

Here, some code which has been used previously will be modularized. Below is the code

for the second internal table which was created, the one with a work area, followed by

some logic which will perform tasks involving the internal table:

247

MODULARIZING PROGRAMS

First, we will look at INCLUDE programs. INCLUDE’s are made available globally within an

SAP system and their sole purpose is modularizing code. They are simple to define and

accept no parameters. Below the REPORT statement, fill in the statement for declaring an

include. Type INCLUDE and then define a name, here “Z_EMPLOYEE_DEFINITIONS”:

This statement is telling the program to include the INCLUDE program within our original

program. There are two ways of creating this new INCLUDE program. You can type the

name into the ABAP editor’s initial screen and select the ‘Attributes’ radio button, fol-

lowed by ‘Create’. Then, when the window appears asking what kind of program this is,

select ‘INCLUDE program’:

The second method is by using forward navigation. In the code window, double-click

Z_EMPLOYEE_DEFINITIONS and select ‘Yes’ to create the new object. Save as ‘Local ob-

ject’ as before, and then you will be presented with a new, blank coding screen where the

INCLUDE program code can be typed/inserted:

248

MODULARIZING PROGRAMS

Remember, the INCLUDE program is a separate file on the SAP system so can be included

in any other program. The INCLUDE program must be activated itself, and when you acti-

vate any program that includes it, it will always check to see if the INCLUDE program is

active too. If not, error messages will appear. A simple way to activate both at once is to

select both in the menu offered when activating the main program:

In the main program, comment out the section where the line type is defined, and copy &

paste it into the INCLUDE program:

249

MODULARIZING PROGRAMS

Because the INCLUDE program has been declared in the main program above, the pro-

gram will continue to work as normal. This is an example of a way in which code can be

effectively outsourced to an INCLUDE program, removing that code from service in the

main program and hence making that program less densely populated with code. This

does not have to be used only for data declarations as in this case. It is commonly used for

sections of programs which involve program logic too.

Procedures
If you want to split programs into separate functional modules, procedures can be used.

These are processing blocks which are called from the main ABAP program, and come in

the form of sub-routines, sub-programs, and function modules.

Sub-routines and sub-programs are mainly used for local modularization of code, mean-

ing small, modular, self-contained units of code called from the program in which they are

defined. These can then, if necessary, be used many times in the program without having

to be typed out repeatedly. Function modules, on the other hand, allow you to create

modular blocks of code which are held separately from an ABAP program and can be

called from any other program.

Sub-routines are local, and function modules are global, and both types of procedure are

commonly used in SAP systems. The latter, though, are probably the more widely used of

250

MODULARIZING PROGRAMS

the two. Function modules can be used to encapsulate all of the processing logic used

within the business system, and SAP has ensured that they can be used both by their own

developers and SAP’s customers.

INCLUDE programs cannot accept any parameters; procedures differ here, and have an

interface for transferring data from the calling program to the procedure itself. Because

data can be passed into a procedure, this means that you can define data definitions

within the procedure itself which are only available to that procedure.

Sub-Routines
One of the great benefits of using sub-routines is that it helps to modularize program code

inside the actual program, giving the program structure.

To create a sub-routine, forward navigation is used. Copy, and then comment out, the ar-

ray fetch SELECT statement from the internal table code above:

Above the commented-out section, use the statement PERFORM. This statement is used

to perform a sub-routine. Then a name for the sub-routine is added. Here, since this code

fills the itab02 internal table, call the sub-routine “itab02_fill” as shown:

Double-click the statement then to use forward navigation and create the sub-routine.

Answer ‘Yes’ to the dialog box and a window appears asking where the sub-routine is to

be created. A choice is offered between the main program, the INCLUDE program and a

new INCLUDE program which can be created. Select the main program here. Once this is

done, code block starting with ‘form’ and ending with ‘endform.’ Is created located at the

end of your program, where the code for the sub-routine can be filled in. Paste in the code

for the array fetch, and the sub-routine is created:

251

MODULARIZING PROGRAMS

When the PERFORM statement is reached as the program executes, the sub-routine cre-

ated will be triggered, meaning that the array fetch is performed in exactly the same way

as previously. Once ‘endform.’ is reached, processing returns to the next statement fol-

lowing PERFORM and continues as normal, terminating at the end. Though the sub-

routine does appear at the bottom of the code, the system can identify it as a sub-routine

and hence it will not be executed again.

Up until now, only global variables have been discussed. These are variables which are

defined as in the program itself, usually at the top of the program and, in this instance, the

INCLUDE program. These variables, including internal tables and so on, can be accessed

throughout the program. If variables are declared only in sub-routines, however, these are

considered local variables. These can only be accessed within the single sub-routine where

they are declared. Once control passes back to the main body of the program, local vari-

ables can no longer be referenced.

Given that these variables only have to be declared within sub-routines, rather than the

whole program, memory usage is kept to a minimum. Additionally, these can be useful in

helping keep everything self-contained and modularized. As mentioned previously, sub-

routines have an interface, and these local variables can be used in the interface.

To declare a local variable, one simply uses the DATA statement as normal within the sub-

routine. Declare one of these named “zempl”, which is LIKE zemployees-surname. This

new variable can now only be referenced by other code which appears in the sub-routine,

between form and endform. You can also declare a variable to be used in the interface. In

252

MODULARIZING PROGRAMS

doing this, the system is being told that data will be transferred to the sub-routine data

interface.

Create code for a second sub-routine, called “itab_02_fill_again” and above this create 2

new DATA fields, as shown in the example below, telling the new sub-routine to use the

new data fields. Then use forward navigation to create this sub-routine:

Note the difference in how the new sub-routine appears. This form has now been gener-

ated including two fields which will then be used in the interface. It is advisable here to

rename the fields in the sub-routine so you know what they refer to:

Notice that there is no data type for these fields, since they are taken from the fields ref-

erenced in the PERFORM statement, however, they will take on the same properties as

those fields. Add some new code to the form as shown below. The values of p_zsurname

and p_zforename will be written, then the value of p_zsurname changed to ‘abcde’:

253

MODULARIZING PROGRAMS

Ensure these fields hold some data by giving z_field1 and z_field2 values in the main pro-

gram:

When the PERFORM statement is executed, these values will be passed through to the

fields in the sub-routine. Add a breakpoint above this and run the program can be run in

debug mode.

You can see z_field1 and z_field2 are filled with their initial values:

Next, the sub-routine is entered and the values of these fields are passed in via the inter-

face, so that the local variables here take on the same values as those in the main pro-

gram:

The two WRITE statements are then executed, followed by the change in value for

p_zsurname. Because the field is used in the interface, the global variable, z_field1’s value

also changes:

254

MODULARIZING PROGRAMS

When using fields in the interface, it is important to keep this in mind. Any fields attached

to the USING addition that are changed in the sub-routine will also be changed in the pro-

gram.

Passing Tables

Sub-routines are not limited to only passing individual fields. Internal tables can also be

passed, as well as a combination of both fields and tables. When passing fields though,

one must always get the sequence of field names correct, as it is the sequence which will

determine which field is passed to the interface variable of the form.

Create a new sub-routine called itab02_write. Then, use the TABLES addition to specify

the table to be passed, here itab02:

Removing any unnecessary code, the form will look like this:

Using the TABLES addition, the program ensures that the contents of the internal table are

transferred to the subroutine and stored in the internal table p_itab_02. Once this sub-

routine is processed, the contents of the local internal table are then passed back to the

global internal table.

255

MODULARIZING PROGRAMS

Note that this method is for a table without a header line. If this code was used with an

old-style internal table, only the header line would be passed to the table. To pass the full

table, you need to add [] at the end of the statement.

When an internal table is passed into a sub-routine, the local internal table is always de-

clared with a header line. Write some code and then debug the program to see this. The

code below will loop through the records of the internal table, sending the contents to a

temporary work area and then writing the contents of the surname field to the output

screen:

When analysed in debug mode, the itab02 table does not have a header record, but

p_itab02 does:

Still, since a new work area was created for the LOOP statement to follow, the header re-

cord becomes irrelevant.

Passing Tables and Fields Together

Now, a combination of fields and tables will be passed into a subroutine at the same time.

Create another PERFORM statement, called itab02_multi. Retain the TABLES statement,

but then add the USING statement afterwards:

256

MODULARIZING PROGRAMS

Use forward navigation to generate the form.

You can then use write code to interact with both fields and the table.

Sub-Routines - External Programs
Sub-routines were initially designed for modularizing and structuring a program, but they

can be extended so that they can be called externally from other programs. Generally to

do this, though, one should create function modules instead.

If you do want to create external sub-routines, however, this is possible. There are two

ways in which a sub-routine can be called from an external program. The first of these is

the one which should really always be used if doing this, as this is compatible with the use

of ABAP objects.

If you want to call a sub-routine called ‘sub_1’, held in a program called ‘zemployee_hire’,

the code would look like this. Note that additions can still be used with this method:

The difference here is that the sub-routine is being called from a separate program in the

SAP system.

The second form is very similar, and works the same with additions and so on, the pro-

gram is just included in brackets. Keep in mind though this form of the code cannot be

used with ABAP objects:

Calling external sub-routines is not common practice, sub-routines tend to stay internal to

the program and where you want to call sub-routines in external programs, this is usually

done via function modules.

257

MODULARIZING PROGRAMS

Function Modules
Function modules make up a major part of an SAP system, because for years SAP have

modularized code using them, allowing for code re-use, first by themselves and their de-

velopers, then by customers.

Function modules refer to specific procedures which are defined in function groups, and

can be called from any other ABAP program. The function group acts as a kind of container

for a number of function modules which would logically belong together, for example, the

function modules for an HR payroll system would be put together into a function group.

SAP systems have thousands of function modules available for use in programs, so if you

search around the system it will often be possible to find pre-existing modules for the

tasks you may be asked to code.

To look at how to create function modules, the function builder must be looked at. This is

found via the menu at the very beginning of the system, via the SAP menu Tools

ABAP Workbench Development. There one will find the function builder, with transac-

tion code SE37:

258

MODULARIZING PROGRAMS

Before diving into an example of how to use a function module we need look at how func-

tion modules are put together, so as to understand how to use them in a program.

Function Modules – Components
The initial screen of the function builder appears like this:

259

MODULARIZING PROGRAMS

Rather than typing the full name here, part of a function module name will be typed with

a wild card character to demonstrate the way function modules can be searched for. Type

amount and then press the F4 key. The results of the search will then be displayed in a

new window:

The function modules are displayed in the lines with a blue background and their function

groups in the pink lines above. If you would like to look further at the function group ISOC,

the Object Navigator screen (se80) can be used. This screen can in fact be used to navigate

many objects held in the SAP system, not only function modules but programs and so on,

using the menus on the left hand side of the screen. Here, we can see a list of function

modules (and other objects) held in the function group ISOC:

260

MODULARIZING PROGRAMS

The four which showed up in the *amount* search are present, along with a number of

others. If double-click any of these function modules, the code for that function module

will appear on screen to the right of the menu:

261

MODULARIZING PROGRAMS

Return back to the function builder screen, do the *amount* search again and this time

select the function module SPELL_AMOUNT. Double-click it and choose Display.

The code will then appear in a screen similar to that of the ABAP editor. There are, how-

ever, a series of tabs along the top which will now be looked at.

262

MODULARIZING PROGRAMS

Attributes Tab

This shows the function group and some descriptive text for the function module, as well

as some options for the function module’s processing type, plus some general data.

Import Tab

This lists the fields which will be used in the data interface which are passed into the func-

tion module from the calling program. These fields are then used by the function module

code:

263

MODULARIZING PROGRAMS

Take note of the different column labels. The fifth column, with a checkbox, is labelled

‘Optional’, meaning that these fields do not have to be passed into the function module

by the calling program. More often than not though, there will be at least one mandatory

field.

Export Tab

This specifies the fields which are sent back to the calling program once the function mod-

ule’s code has been processed:

Changing Tab

This lists fields which can be changed by the function module.

Tables Tab

Like sub-routines, with function modules you are not restricted to only passing in fields,

but can also pass in internal tables.

Exceptions Tab

This tab lists exception information which can be passed back to the calling program,

which indicate whether the function module was executed successfully or not. This is

where specific error messages for can be defined to identify any specific errors or warn-

ings that occur during code execution that need to be passed back to the calling program

to allow the programmer take the necessary course of action.

264

MODULARIZING PROGRAMS

Source Code Tab

The final tab is the source code itself for the function module, which appears automati-

cally when one opens it from the function builder screen. Here, you can examine the code

in depth so as to determine what exactly the function module is doing.

With pre-existing function modules you generally do not even have to look at this, as you

should know what data the function module is supposed to send back.

The function module in this example converts numeric figures into words, so there is little

need to examine the code in depth if one already knows what the output is to be.

Function Module Testing
As Function Modules are created as separate objects, there are tools you can use to test

function modules without having to write the code to call them. Just as programs can be

tested and their output checked, you can do exactly the same with function modules. This

is done with the F8 key or the same Test/Execute icon found in your own programs. In

fact, you don’t even have to be within the function module to do test it out. It can be done

from the initial SE37 screen once the module’s name appears in the appropriate field:

Test out the function module using the Test button as shown above.

265

MODULARIZING PROGRAMS

As all fields are optional, this can then be executed without inputting any data.

Since the amount in the import parameters was 0, the export parameters then read ZERO.

If you click the small button in the Value column of the export parameters, the results are

broken into their individual export fields.

266

MODULARIZING PROGRAMS

The number input was 0, the decimal value was 0 and a currency was not specified, so the

WORD output is simply ZERO.

Let’s run the test again but this time enter some data into the AMOUNT field and CUR-

RENCY field. Then execute the test again.

267

MODULARIZING PROGRAMS

This output may look odd, but when the button is pressed you will see that, as GBP has 2

decimals, the value 56 has been included in the decimals column rather than the number

column:

If you were to select a currency which does not use decimals, the full number would ap-

pear.

The ability to test function modules in this way is a great time saver for the programmer,

as it allows you to confirm whether a function module will complete the tasks you want

before generating the code to use it in your program.

Function Modules - Coding
Now we have successfully tested the function module and know what it does, let’s see

how we would call it from an ABAP program.

In SE38, create a new program called Z_MOD_2. Enter some code so that a parameter can

be set up where a value can be entered:

(The text element text-001 here reads ‘Enter a Value’)

268

MODULARIZING PROGRAMS

Now a value can be entered into the selection screen, the value can be passed on to the

function module. To write the code for this, the ‘Pattern’ button can be used (also

CTRL+F6). It is advisable to always use this as it returns all the variables you need to use

automatically. Once this is clicked, a window appears where CALL FUNCTION is the first

option in a list. In the text box, enter “spell_amount”, the function module’s name, and

click the continue button:

ABAP code is then generated automatically:

269

MODULARIZING PROGRAMS

Note that a large amount of the code is initially commented out. This is because all of the

fields in the function module spell_amount are optional. Mandatory fields would not be

commented out. The comment character should be removed if that field is then to be

used. Here, only the AMOUNT field will be imported to the function module.

Note the position of the period between the CALL FUNCTION statement, its additions and

the IF statement below. It appears entirely on its own line. It appears there as the system

does not know how much of the initially commented out code is to be used.

The IF statement was also included automatically so as to follow best practices expecting

the programmer to and check whether the function module was executed successfully. As

has been discussed before, if sy-subrc does not equal zero, there is generally a problem of

some kind, so a message can be included to indicate this. Here, depending on the prob-

lem, it will be filled with one of the numbers defined in the EXCEPTIONS part of the func-

tion module.

Enhance the IF statement to include a code to WRITE a message to the screen to say “‘The

function module returned a value of: ‘, sy-subrc.”, then add the ELSE addition, so as to

write the correct result out when the function module is successful. This should then read

“WRITE: ‘The amount in words is: ‘” Here, a new variable must be set up to hold the value

returned from the function module. Call this “result”.

270

MODULARIZING PROGRAMS

The variable which the function module returns is called IN_WORDS, so set up the corre-

sponding variable in the program called result. Use forward navigation to check the data

type and length of IN_WORDS so that result can be set up to match. When you do this you

will see that IN_WORDS is defined using the LIKE statement to refer to a structure called

SPELL.

The same can then be used for the new “result” variable in the main program. Use a DATA

statement to declare “result” LIKE the spell structure. As result is defined LIKE a structure

with a mix of data types, it is unlikely that the WRITE statement will process it correctly. If

you try to use this a syntax error will appear:

Remember that when the function module was tested? What was returned was not in fact

only a character field, but a series of numbers as well. If you scroll to the far right of the

test results screen you would see several more fields were present.

This means you need to look at the structure of SPELL, and find the component which ap-

plies to IN_WORDS:

271

MODULARIZING PROGRAMS

The component is WORD, so all you need to do is add WORD to the end of the WRITE

statement for result.

The final thing to be changed is to feed in the correct value which the function module will

then import. The AMOUNT field in the code currently equals 0. Change this to the mynum

variable used for the selection screen.

The final code should appear like this and can be tested:

272

MODULARIZING PROGRAMS

273

MODULARIZING PROGRAMS

Having completed this example, these guidelines can be followed for practically any func-

tion module in SAP and, once you have got to grips with how function modules work, it

should not be too big a leap to then create your own when necessary.

274

MODULARIZING PROGRAMS

You have reached the end of this
book but don’t stop learning about
SAP.

Visit http://www.saptraininghq.com/book-purchase-thankyou to find out

about the special bonus offer for all readers of the book as well as read

all the additional training material on the website.

